
FortranCon 2020
Thursday 02 July 2020 - Saturday 04 July 2020

University of Zurich

Book of Abstracts





Contents

iii





FortranCon 2020 / Book of Abstracts

Welcome & Keynote / 1

Registration

Welcome & Keynote / 2

Welcome

Welcome & Keynote / 3

Keynote: Fortran 2018…and Beyond

Steve Lionel, Convenor of the ISO/IEC Fortran Standard Committee, talks about how a Fortran stan-
dard is made and then gives an overview of what’s new in Fortran 2018. Looking to the future, Steve
then highlights features planned for the next revision of the standard, whose working title is Fortran
202X.

4

Closing notes
Corresponding Author: tiziano.mueller@chem.uzh.ch

Session B / 7

Front-end optimization in gfortran
Author: Thomas König1

1 Gnu Fortran maintainer

Corresponding Author: tk@tkoenig.net

The gfortran front end to gcc reads in the source code and converts it to an abstract syntax tree,
which is then converted to an intermediate representation which gcc then further optimizes and
converts into assembler. However, there are certain optimizations that require knowledge of Fortran
semantics and which are better handled at the level of the abstract syntax tree because the rest of the
compiler is language-agnostic. In other words, the compiler rewrites the source code representation
to something that the user ought to have written.

This presentation gives an overview of what transformations are currently done, how their effect
can be controlled by the user and what future developments might be. On that last point, input from
the community is highly welcome.

Session C / 8

Page 1



FortranCon 2020 / Book of Abstracts

Using R with High Performance Fortran on a Windows Laptop

Author: Erin Hodgess1

1 Western Governors University

Corresponding Author: erin.hodgess@wgu.edu

We will discuss the integration of R with Fortran, using such tools as
MPI, OpenACC and CUDA Fortran on a Windows laptop. We will consider how
to create a package with all three of these tools. We will demonstrate the
considerable speedup with ordinary kriging and other spatial functions. We
can exploit the statistical functions by utilizing the NVIDIA graphics card
in conjunction with the PGI Community Edition Fortran compiler. Our
package can extend the current functions by extreme speedups.

Session G / 9

Highly Parallel Fortran and OpenACC Directives
Authors: Jeff Larkin1; Michael Wolfe1

1 NVIDIA

Corresponding Authors: jlarkin@nvidia.com, mwolfe@nvidia.com

Fortran has long been the language of computational math and science and it has outlived many
of the computer architectures on which it has been used. Modern Fortran must be able to run on
modern, highly parallel, heterogeneous computer architectures. A significant number of Fortran
programmers have had success programming for heterogeneous machines by pairing Fortran with
the OpenACC language for directives-based parallel programming. This includes some of the most
widely-used Fortran applications in the world, such as VASP and Gaussian. This presentation will
discuss what makes OpenACC a good fit for Fortran programmers and what the OpenACC language
is doing to promote the use of native language parallelism in Fortran, such as do concurrent and Co-
arrays.

Session D / 10

Designing a Modern C++/Fortran Interface by Example
Author: Maximilien Ambroise1

1 Universität Heidelberg

Corresponding Author: maximilien.ambroise@iwr.uni-heidelberg.de

In the world of quantum chemistry programs, Fortran reigns supreme. While there are packages
available that are purely written in C++ and Python, it has become increasingly common to combine
different languages. Common combinations include C++/Fortran or Python/C++.

Fortran 2003 introduced a standardized way to generate interoperable procedures and derived types
with the C programming language, using the BIND(C) attribute. This was a necessary step, as inter-
faces from C to legacy Fortran code had compiler-specific problems which made portability a major
issue. Following Fortran 2008 and 2018, more technical specifications were accepted that furthered
interoperability.

Page 2



FortranCon 2020 / Book of Abstracts

In this presentation, we will discuss the development of a C/C++ interface to a modern Fortran
library called DBCSR (Distributed Block Compressed Sparse Row), designed for efficient sparse
matrix-matrix multiplication, among other operations. This interface is currently being incorpo-
rated in a novel sparse-tensor quantum chemistry program written in C++. Several points about
C/Fortran interoperability will be addressed, such as memory management, derived types, handling
arrays, and problems encountered therein, as well as how preprocessors may be used to help design
a modern C++ interface with Fortran at its roots.

Session G / 12

ParaMonte: Plain Powerful Parallel Monte Carlo Library
Authors: Amir Shahmoradi1; Fatemeh Bagheri1; Joshua Osborne1; Shashank Kumbhare1

1 The University of Texas

Corresponding Authors: a.shahmoradi@uta.edu, bagheri.fateme@gmail.com, shashankkumbhare8@gmail.com,
joshuaalexanderosborne@gmail.com

We present the ParaMonte library, a pure-modern-Fortran open-source software for serial and paral-
lel stochastic sampling and integration of high-dimensional mathematical objective functions of arbi-
trary shapes and dimensions. The principal design goals of the ParaMonte library are: 1. full automa-
tion of the entire build process of the library as well as all Monte Carlo simulations, 2. interoperabil-
ity of the core library with multiple programming languages, including C/C++/MATLAB/Python/…,
via the C-interoperability features of the Fortran language, 3. high-performance 4. parallelizabil-
ity and scalability of the simulations, 5. virtually zero-dependence on external libraries, 6. fully-
deterministic reproducibility and continuation of all stochastic simulations, 7. automatic comprehensive-
reporting and post-processing of the simulation results. The library is Fortran-2018 standard compli-
ant and the parallelization of the code relies on the MPI and Coarray parallelism paradigms within
the Fortran programming language. We discuss how these design goals can help the ParaMonte
users readily and efficiently solve a variety of machine learning and scientific inference problems
on a wide range of platforms, from Jupyter notebooks on personal laptops to supercomputers. We
also discuss how the modern features of the Fortran language simplified software development and
what new language features would be desired from the developer perspective.
https://www.cdslab.org/paramonte/

Session D / 13

Shroud: generate Fortran wrappers for C and C++ libraries
Author: Lee Taylor1

1 Lawrence Livermore National Laboratory

Corresponding Author: taylor16@llnl.gov

Fortran application often need to access libraries which are written
in C or C++. The interoperability with C features introduced in
Fortran 2003 standardized access to symbols and types. But to access
all of the features of C++ libraries additional wrapper code must be
written, often by the author of the C++ library who may not be
familiar with modern Fortran features.
Shroud is a tool to create an idiomatic Fortran interface for a C++
library. The user creates a YAML file with the C/C++ declarations to
be wrapped along with annotations to provide semantic information and
code generation options.
Many C++ features will map directly to Fortran such as classes,

Page 3



FortranCon 2020 / Book of Abstracts

overloaded function, default arguments and template instantiation.
Shroud has successfully been used by several projects over the past
four years.
Shroud is written in Python and available at github.com/llnl/shroud
with a BSD license.

Session G / 14

Parallelization of a Legacy Software through Fortran 2018 Stan-
dard
Author: Nicolas Netto1

1 Electrical Energy Research Center (Cepel)

Corresponding Author: nicolasrln@cepel.br

Anatem is a software developed by the Brazilian Electrical Energy Research Center (Cepel) that aims
to evaluate electromechanical disturbances on large power systems, being the most used software
in Brazil for that matter. Its development dates from the late ‘80s through today, being a legacy
code mostly written in Fortran 77 standard and before object-oriented programming mindset even
existed. In the face of a challenge to achieve real-time simulation, parallel techniques were deployed
employing Fortran 2018 standard with Intel Fortran 2020 compiler, reaching desirable results in less
than six months of work.

This presentation discusses how coarrays and collective functions could be applied to obtain fast im-
plementations, with less coding than alternatives like theMPI library, the upsides, and the downsides
for the before-mentioned approach.

Session D / 15

Connecting Fortran to the Internet of Things

Author: Philipp EngelNone

Corresponding Author: pengel@hs-nb.de

At first glance, Fortranmay not be easily associated with the emerging Internet ofThings and its new
networked services, data formats, and protocols. In fact, the language features of modern Fortran
make it possible to inter-connect with existing third-party libraries, written in C, Lua, Python, and
other languages. With the toolset given by the ISO C binding module, Fortran applications gain
access to RESTful web services, NoSQL databases, ZeroMQ message queues, MQTT-based pub/sub
middleware, or IoT sensor networks. The talk will give an overview of existing technologies and
how to access them from Fortran.

Session A / 16

Fortran Package Manager

Authors: Brad RichardsonNone; Milan Curcic1; Ondřej ČertíkNone

1 University of Miami

Page 4



FortranCon 2020 / Book of Abstracts

CorrespondingAuthors: everythingfunctional@protonmail.com, caomaco@gmail.com, ondrej@certik.us

While Fortran is the oldest high level language, it has done quite well in keeping up with the times in
terms of features and capabilities of the language itself. However, modern practices and developers
have become accustomed to tools and ecosystems which provide many conveniences in a program-
ming environment. Unfortunately, Fortran has not kept pace with such tooling and ecosystems.
One such tool which has become popular is a package manager. A package manger is a tool that
manages the dependencies of a project on other libraries. This is accomplished by keeping track of
the dependencies, with specifiable version constraints, and automating the process of fetching them
- including transitive dependencies - for use in the compilation of the project. Often included are
the facilities for compiling, running, and testing the project, as well as searching for available open
source libraries, and generating a template for new projects. This paper describes the development
of just such a tool for Fortran, aptly named the Fortran Package Manager (FPM).

Session F / 18

Applying context-free grammar to hierarchically organized and
variably shaped arrays

Authors: Robert Schweppe1; Stephan Thober1; Sebastian Müller1; Luis Samaniego1

1 Helmholtz-Centre for Environmental Research Leipzig - UFZ

CorrespondingAuthors: stephan.thober@ufz.de, robert.schweppe@ufz.de, luis.samaniego@ufz.de, sebastian.mueller@ufz.de

In the community of environmental modelling, the advent of hyper-resolution Earth observations
and datasets in conjuncture with growing computational resources lead to an increase in model
resolution.
The mathematical representations of biogeophysical processes need to be solved for billions of grid
cells and thousands of time points.
Each process requires parameters that cannot be easily and sensibly set fix nor calibrated.
Instead they need to be inferred directly from the land surface properties through transfer functions.
In a simple form, they follow a context free grammar which follows the Fortran language.
The transferred effective parameters have a hierarchical interdependency forming a tree structure.
Yet finally, the shape of the arrays containing the land surface properties does usually not conform
with the shape of the array of process parameters of the model.
This necessitates multiple array broadcasting, slicing and remapping steps.
The scientific approach - the Multiscale Parameter Regionalization (MPR) concept - is now available
as an object-oriented and flexible Fortran library (https://git.ufz.de/chs/MPR).

In this presentation, we discuss the design of the MPR library, show implementation details and
highlight major difficulties. We are strongly interested in community feedback on the implementa-
tion.

Session F / 19

Interfacing with OpenCL fromModern Fortran for Highly Paral-
lel Workloads

Author: Laurence Kedward1

1 University of Bristol, UK

Corresponding Author: laurence.kedward@bristol.ac.uk

Page 5



FortranCon 2020 / Book of Abstracts

OpenCL is a well-established and widely-supported standard for executing parallel workloads
on accelerator devices such as conventional multicore CPUs as well as GPUs and FPGAs.

In this presentation, detail is given on amodern Fortran library which wraps calls to the OpenCL API
with a higher abstraction level aimed at scientists and engineers looking to execute highly-parallel
OpenCL kernels from Fortran. Modern Fortran features, including derived types, generics, operator-
overloading and the iso c binding, are exploited to bring the Fortran style to OpenCL by: abstracting
away pointers; providing a level of type-safety for device memory; detecting and handling program
errors in a user-friendly manner; and providing a concise but feature-rich interface.

Device kernels are written in the OpenCL C dialect and the Fortran library provides routines to:
initialize the accelerator, allocate device memory, enqueue kernels for execution, perform memory
transfers and manage device synchronisation.

Code extracts and results are presented for two fluid dynamics codes implementing a lattice Boltz-
mann method and a multigrid finite volume Euler solver. Background is given on the challenges and
design choices for programming GPU hardware from a Fortran perspective, followed by discussion
on the future of accelerator offloading from the Fortran language.

Session F / 20

A Fortran-Keras Deep Learning Bridge for Scientific Computing

Authors: Jordan Ott1; Mike Pritchard1; Natalie Best2; Erik Linstead2; Milan Curcic3; Pierre Baldi1

1 UC Irvine
2 Chapman University
3 University of Miami

Corresponding Authors: caomaco@gmail.com, linstead@chapman.edu, mspritch@uci.edu, pfbaldi@ics.uci.edu,
best120@mail.chapman.edu, jott1@uci.edu

Implementing artificial neural networks is commonly achieved via high-level programming lan-
guages like Python, and easy-to-use deep learning libraries like Keras. These software libraries come
pre-loaded with a variety of network architectures, provide autodifferentiation, and support GPUs
for fast and efficient computation. As a result, a deep learning practitioner will favor training a
neural network model in Python where these tools are readily available. However, many large-
scale scientific computation projects are written in Fortran, which makes them difficult to integrate
with modern deep learning methods. To alleviate this problem, we introduce a software library,
the Fortran-Keras Bridge (FKB). This two-way bridge connects environments where deep learning
resources are plentiful, with those where they are scarce. The library a number of unique features
offered by FKB, such as customizable layers, loss functions, and network ensembles. We apply FKB
to address open questions about the robustness of an experimental approach to global climate sim-
ulation, in which subgrid physics are outsourced to deep neural network emulators. In this context,
FKB enables a hyperparameter search of one hundred plus candidate models of subgrid cloud and
radiation physics, initially implemented in Keras, to then be transferred and used in Fortran to assess
their emergent behavior.

Session F / 21

Code::Blocks: open source, cross platform IDE for Fortran
Author: Darius Markauskas1

1 TU Berlin

Page 6



FortranCon 2020 / Book of Abstracts

Corresponding Author: markauskas@tu-berlin.de

While it is possible to write Fortran code with a simple text editor, many programmers prefer to use
an IDE (Integrated Development Environment) for their work. In addition to simply highlighting
text in many editors, Code::Blocks offers Fortran users a grouping of their code files into projects,
compiling code with the selected compiler directly from the IDE, code navigation, code completion
and debugging with GDB debugger and more. Code::Blocks IDE is an open source project that has
been continuously developed in C ++ by many developers from different countries since 2004. The
source code of the IDE is organized in the core and in many plugins. Most of the functions specific
to Fortran are implemented in the FortranProject plugin. The presentation explains many features
of this IDE that are useful for programming in Fortran. It shows how to create a project and how to
add existing code to this project, how to navigate the code and how to debug it. Some new features
and ongoing work are also shown.

Session B / 22

Flang: The LLVM Fortran Front-End
Authors: Gary Klimowicz1; Steve Scalpone1

1 NVIDIA

Corresponding Author: gklimowicz@nvidia.com

We’ll present the goals, current status and future plans for Flang, the LLVM Fortran front-end.

Flang is the new LLVM-based Fortran front-end supporting full Fortran 2018. It is being written
from scratch in modern C++ and will make extensive use of existing LLVM tools (MLIR, LLVM IR,
utility libraries, and so on). We expect this to be the last Fortran front-end that will ever need to be
written.

The primary goals of Flang are
- Build a robust Fortran compiler using modern compiler techniques (parser combinators, multi-level
intermediate representations) that encompasses all of the Fortran 2018 standard.
- Develop an active community of developers (now DOE, NVIDIA, Arm, AMD and others).
- Provide support for Fortran tool development.
- Provide support for Fortran language experimentation for features proposed for future Fortran
standards.

60,000+ lines of the compiler have been upstreamed to the flang/ directory of the LLVM monorepo.
Its build integrates with the rest of LLVM (as an optional component). This covers parsing, semantic
analysis and the start on lowering to an MLIR dialect called FIR.

We will also briefly discuss the next steps for the project.

Session C / 23

Copernicus Spacecraft Trajectory Design and Optimization Pro-
gram
Author: Jacob Williams1

1 NASA Johnson Space Center

Corresponding Author: jacob.williams-1@nasa.gov

Copernicus is a spacecraft trajectory design and optimization application developed at the NASA
Johnson Space Center. Copernicus is written in Fortran and usesmany features of the latest language

Page 7



FortranCon 2020 / Book of Abstracts

standards. The tool is used for a wide range of projects at NASA, including the upcoming Artemis
missions to flight test the Orion spacecraft and then return humans to the Moon. This presentation
will give a brief overview of the software, its history, how it was designed, and how it is used.

Session E / 24

Program flow control using scripting languages
Authors: Nick Papior1; Alberto Garcia2

1 DTU DCC
2 ICMAB

Corresponding Author: nickpapior@gmail.com

Controlling program flow from scripting languages is a tractable extension which lowers barriers
for extending functionality in lower level languages (such as fortran).

In this presentation we show how a set of required features enables end-users to change and control
the program flow using Lua scripts.
The following features are necessary for minimal code in the hosting program:
- dictionaries for seamless data exchange with little coding effort
The dictionaries allows (pointers to) data to be referenced via characters and ensures
no intermediate copying of data.
- running a Lua interpreter
- creating interaction points in program
This is the most problematic part since you have to expose break points where the
hosting program stops and calls Lua. Another approach would be to build your entire program
around scripting.

In our density functional theory program (Siesta) we expose Lua for users to implement their own
molecular dynamics engines, change convergence criteria/properties based on self consistent cycles,
and more.

This coding effort revealed substantial insight on how to control and expose data structures for end
users in scripting languages.
We envision that other scripting languages are better suited since the communities are not experi-
enced Lua coders/users, e.g. Python, nim.

[aotus,flook,fdict]

Session C / 25

EIS2 - A mathematically rich input file processor for HPC appli-
cations
Author: Christopher Brady1

Co-author: Heather Ratcliffe 1

1 University of Warwick

Corresponding Authors: c.s.brady@warwick.ac.uk, h.ratcliffe@warwick.ac.uk

Allowing users to control software using input control files has substantial benefits for ease of use,
avoidance of error and reproducibility of results. Evaluation of mathematical expressions provides
a powerful way of allowing user control of even the most complex codes while remaining natural

Page 8



FortranCon 2020 / Book of Abstracts

and easy-to-learn for the end user. Derived from the input control system of the EPOCH particle-
in-cell plasma code, EIS2 allows a developer to add rich text file based controls to a large scientific
code. EIS2 combines a mechanism for reading structured, hierarchical text files with a mechanism
for evaluting mathematical expressions while allowing the host code to provide contextual informa-
tion as the expression is evaluated. This means that a text expression provided by a user such as
(1+sin(x))*(1+cos(y)) can be easily evaluated over a range of x and y values and used to set values
as required by the host code. By using an approach that is optimised for performance rather than
generality evaluating these expressions is many times faster than a general purpose parser such as
Python.

EIS2 is written in standard Fortran 2003 (with optional 2008 extensions) and has a C interoperable
interface for other languages (releasing soon).

https://github.com/csbrady-warwick/EIS-2

Session A / 26

Fortran Standard Library
Authors: Jeremie Vandenplas1; Bálint Aradi2; Izaak Beekman3; Ondřej ČertíkNone; Milan Curcic4; Pierre de Buyl5;
Juan FiolNone; Michael Hirsch6; Yvan Pribec7; Nathaniel Shaffer8

1 WUR
2 University of Bremen
3 ParaTools Inc.
4 University of Miami
5 KU Leuven
6 SciVision Inc.
7 Technical University of Munich
8 Los Alamos National Laboratory

CorrespondingAuthors: caomaco@gmail.com, jeremie.vandenplas@wur.nl, ivan.pribec@tum.de, contact@izaakbeekman.com,
pdebuyl@pdebuyl.be, nrshaffer@protonmail.com, info@scivision.dev, ondrej@certik.us, aradi@uni-bremen.de

The Fortran Standard, as published by the International Organization for Standardization (ISO), does
not include a Standard Library. The language can be extended with new intrinsic procedures and
modules, but these must be formally standardized and then implemented by compiler vendors be-
fore becoming available to users. Therefore, the goal of this project is to provide a community driven
and agreed upon de facto “standard” library for Modern Fortran, called the Fortran Standard Library
(stdlib; https://github.com/fortran-lang/stdlib). This library aims to provide to the community a set
of procedures for science, engineering, and mathematics. The overall scope of the Fortran Standard
Library is therefore similar to the one of SciPy or to the default built-inMatlab scientific environment.
Currently the library includes procedures for catching and handling errors, handling optional argu-
ments, facilitating I/O operations, linear algebra, numerical integration, and descriptive statistics.
Started a few months ago, no less than 15 people already contributed to the development of the For-
tran Standard Library and its documentation. Many other programmers are also involved in active
discussions about its development through GitHub issues. The development of this library is part of
the Fortran-lang project and aims to collaborate with the Fortran Standards Committee.

Session B / 27

LFortran: Interactive LLVM-based Fortran Compiler for Modern
Architectures
Authors: Ondřej Čertík1; Nikhil Maan2; Ankit Pandey3; Milan Curcic4; Peter Brady1; Zach Jibben1; Neil Carlson1;
Rohit Goswami5; Amir Shahmoradi6; Arjen Markus7

Page 9

https://github.com/csbrady-warwick/EIS-2


FortranCon 2020 / Book of Abstracts

1 Los Alamos National Laboratory
2 Amity University, India
3 Grinnell College
4 University of Miami
5 Science Institute, University of Iceland, VR-III, 107, Reykjavik, Iceland and Department of Chemistry, IIT Kanpur,

India
6 the University of Texas Arlington
7 Deltares, The Netherlands

CorrespondingAuthors: caomaco@gmail.com, zjibben@lanl.gov, nnc@lanl.gov, ptb@lanl.gov, pandeyan@grinnell.edu,
ondrej@certik.us, rog32@hi.is, arjen.markus@deltares.nl, nikhilmaan22@gmail.com, shahmoradi@utexas.edu

We are developing a modern open-source Fortran compiler called LFortran
(https://lfortran.org/). This front-end compiler will enable the interactive
execution of code in environments like Jupyter. This will allow exploratory work
(much like Python, MATLAB or Julia) which is currently not feasible. The
interactivity of our compiler does not impede compilation of binaries with the
goal to run user’s code on modern architectures such as multi-core CPUs and
GPUs, which is an essential requirement for wider Fortran adoption that current
Fortran compilers do not address well. A Live demo of the compiler with a
Jupyter notebook will be shown. The compiler itself is written in C++ for
robustness and speed with optional Python wrappers to improve inter-operability.
It parses Fortran code to an Abstract Syntax Tree (AST) and transforms it to an
Abstract Semantic Representation (ASR). LFortran has several backends that
transform the ASR to machine code via LLVM, or to C++, or to provide automatic
Python wrappers. More backends are planned. The compiler has been designed to be
modular so that data can be extracted/inserted between the different stages,
which is an important feature that would support an ecosystem of tools that
otherwise would be hard with a monolithic compiler.

Session A / 28

Toward a thriving open source Fortran community
Author: Milan Curcic1

Co-authors: Ondřej Čertík ; Laurence Kedward 2; Vincent MAGNIN 3; Ivan Pribec 4; Brad Richardson ; Jeremie
Vandenplas 5

1 University of Miami
2 University of Bristol, UK
3 Univ. Lille, CNRS, Centrale Lille, Yncréa ISEN, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000

Lille, France.
4 Technical University of Munich
5 WUR

CorrespondingAuthors: everythingfunctional@protonmail.com, caomaco@gmail.com, laurence.kedward@bristol.ac.uk,
jeremie.vandenplas@wur.nl, ivan.pribec@tum.de, ondrej@certik.us, vincent.magnin@univ-lille.fr

A thriving community around a programming language is essential for onboarding
new users and retaining existing ones. Besides a few discussion boards and mailing lists, Fortran
has not had a healthy online community in the modern internet era, like many other programming
languages have. Despite the developments of the language, its user base has been declining as a
result. Many new software projects are being started in languages like C++, Python, or Julia, despite
Fortran being better suited for the task at hand. In this talk, we will discuss the need for and the
ongoing development of the new fortran-lang (https://fortran-lang.org) community and its suite of
projects that currently include a standard library, package manager, and a website. Fortran-lang
aims to provide a central place for Fortran users, beginning and expert alike, to find recommended

Page 10



FortranCon 2020 / Book of Abstracts

tools, libraries, tutorials, and discussion venues that are inclusive and welcoming of newcomers.
We believe that an organized community and a home of Fortran on the internet, in addition to the
Standards Committee and compiler developers, are essential for the long-term thriving—and not
just mere survival—of Fortran. Finally, we will discuss the next steps, the one-year vision, and the
10-year vision for going forward.

Session D / 29

gtk-fortran: a GTK / Fortran binding
Author: Vincent MAGNIN1

Co-authors: James TAPPIN 2; Jens HUNGER 3; Jerry DeLisle 4

1 Univ. Lille, CNRS, Centrale Lille, Yncréa ISEN, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000
Lille, France.

2 RAL Space, STFC Rutherford Appleton Laboratory, Harwell Campus , Didcot,Oxfordshire OX11 0QX, United Kingdom
3 Technische Universität Dresden, Department of Chemistry and Food Chemistry, Dresden, Germany
4 GFortran Team, USA

CorrespondingAuthors: vincent.magnin@univ-lille.fr, jhunger@protonmail.com, james.tappin@stfc.ac.uk, jvdelisle@charter.net

Thegtk-fortran binding (https://github.com/vmagnin/gtk-fortran/wiki), developed since 2011, is based
on the ISO_C_BINDING module, introduced in the Fortran 2003 standard, which is used to inter-
face fortran programs with the functions of the GTK libraries (mainly written in C). gtk-fortran
is multi-platform: Linux, FreeBSD, MacOS, Windows (via MSYS2), and even Raspberry Pi (ARM
processor)…

GTK being a collection of libraries (GTK, Pango, GDK, ATK, Cairo, GdkPixbuf, GLib…), a python
script parses the hundreds of GTK header files and generates around 10000 Fortran / C interfaces.
A supplementary High Level library can ease programming, and PLplot can also be used in gtk-
fortran. The user can learn to create Graphical User Interfaces using its wiki documentation and the
commented Fortran examples.

We will finally speak of the new GTK 4 development branch, our objective being to be ready for the
release of that next major version around the end of the year. We will also present some ideas for
the future and a SWOT analysis of the project.

Session G / 30

F2PY: Bringing fast code into the future
Authors: Melissa Weber Mendonça1; Pearu Peterson1

1 Quansight

Corresponding Authors: melissawm@gmail.com, pearu.peterson@quansight.com

F2PY is a tool (authored by Pearu Peterson in 1999) to generate custom CPython
extension modules to interface high-performance Fortran or C libraries to high-level Python code.
The F2PY tool, currently packaged with NumPy, is one of the most fundamental packages in the sci-
entific Python ecosystem. On the other hand, F2PY has not kept up with modern Fortran standards,
as evidenced by the lack of support for user-defined types or derived types, for example. Adding
these new features will improve significantly the applicability range of F2PY to interfacing modern

Page 11



FortranCon 2020 / Book of Abstracts

Fortran libraries to Python code. Since Fortran is often, but unfairly, considered a niche program-
ming language, finding contributors and building a community around this package has proven
difficult, in spite of its importance and relevance in modern scientific code.

In this talk, wewill discuss the current status of the F2PY project and possible ways forward. Thiswill
include a discussion on how to create extension modules and F2PY’s approach to doing this, with
concrete examples for those unfamiliar with the tool. In addition, we will discuss current efforts
to modernize this tool to extend its capabilities and make sure that projects that depend on it are
supported in the future.

Session E / 31

Experimental Fortran Programming
Author: Arjen Markus1

1 Deltares

Corresponding Author: arjen.markus@deltares.nl

While Fortran is usually used for serious work, number crunching for instance, it does not mean
that that is the only way to use it. Far from it, the features offered by modern Fortran allow all
manner of experimentation with other programming paradigms. Emulating, say, prototype-based
object-oriented programming may not lead to an efficient implementation, but it offers the benefits
of demonstrating what the possibilities are of such a paradigm. In this talk I would like to present
three cases of extending the language beyond the obvious:

• Using user-defined operators to stay close to the mathematical notation of differential equations

• An alternative way of looking at object-oriented programming

• Introducing “lambda expressions”or anonymous functions

As stated, the implementation probably will not lead to very efficient programs, but thinking beyond
the traditional will bring new possibilities to light.

Session C / 32

Evolving Fortran for Emerging Architectures: Lessons from the
ICON-GPU Atmospheric Model
Author: William Sawyer1

1 Swiss National Supercomputing Centre

Corresponding Author: wsawyer@cscs.ch

For decades Fortran has been on the forefront of high performance computing. As new architec-
tures emerged, the Fortran standard added constructs to exploit them, but not always with complete
success. For example, F90 added array syntax to describe vectorization, yet vectorizing compilers
found it easier to translate DO loops with appropriate directives. Co-arrays were added in F08 and
extended in F18 to support distributed memory, but this is usually addressed by the Message-Passing
Interface (MPI). Other libraries, e.g., BLAS, LAPACK or PLASMA cover optimized numerical calcu-
lations outside of the language.

The advent of General Purpose Graphics Processing Units (GPGPUs) has created another conundrum.
They can be programmed with an appropriate language (CUDA, CUDAFortran, or OpenCL) or with

Page 12



FortranCon 2020 / Book of Abstracts

directives (e.g., OpenMP4.5 or OpenACC3.0), each with disadvantages. In this talk, we outline the
lessons learned in porting the ICON atmospheric model to GPUs with OpenCL, CUDAFortran and,
finally, OpenACC, with the latter now in production at the Swiss National Supercomputing Centre
(CSCS). Now that we understand the programming challenges, it is possible to consider new exten-
sions to the Fortran standard to address GPUs, which are clearly not going away any time soon. We
attempt to give some future perspectives.

Session E / 33

The Futile project: an embedded DSL to simplify the treatment of
low-level operation in large Fortran programs
Author: Luigi Genovese1

1 CEA Grenoble

Corresponding Author: luigi.genovese@cea.fr

Whilewriting a FORTRAN code, the developer is often obliged to increase code smell (see https://en.wikipedia.org/wiki/Code_smell)
due to the intrinsic characteristic of the programming language.
This problem not only generate inaesthetically long code, but is also responsible of the great major-
ity of side-effects and bugs.
The FUTILE project is an attempt to simplify developer’s life by taking care of some of these opera-
tions.
By definition, this suite of modules is conceived for Fortran programmers. The Fortran standard
used is F95, with only minor extensions to F2003 standard, in the aim of increase portability with
older codes.
In addition to that, FUTILE package might be also seen as a framework, which helps traditional For-
tran developers to “think differently” and to write code subprograms which are similar to those of
higher level, “object-oriented” programming.

Session E / 34

Generic Programming Techniques
Author: Patrick Seewald1

1 University of Zurich

Corresponding Author: patrick.seewald@chem.uzh.ch

Different strategies towards generic programming in Fortran are discussed. The Fypp preprocessor is
presented as a versatile tool for condititional compilation and template metaprogramming.

Page 13


