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The two classical pillars of science: Experiment and Theory

A very elementary depiction of the scientific method

How do we make a scientific inference?

The prediction pyramid

(Shahmoradi 2017)

How to find the best solution?

• Define an objective function, indicating how good 
each solution is.

• Optimize the function (parameter tuning), or,

• Sample the function (uncertainty quantification), or,

• Integrate the function (model selection).



A scientific inference toy problem

Hypothesis: Data comes from a 
Normal distribution

Objective Function:
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Hierarchical diagram of optimization, sampling, and integration methods

Stochastic Optimization 
Methods

Stochastic Sampling 
Methods

Stochastic 
Integration Methods

The onion-like structure of stochastic optimization algorithms

Nested 
Sampling

Parallel Tempering



Hierarchical diagram of optimization, sampling, and integration methods
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Monte Carlo methods: A brief history

Enrico Fermi
Physicist (1901-1954)

Stanislaw Ulam
Mathematician (1909-1984)

John von Neumann
Mathematician (1903-1957)

Electronic Numerical Integrator And Computer (ENIAC)

Fermi’s Analog Computer (FERMIAC)



Monte Carlo methods: A brief history

Enrico Fermi
Physicist (1901-1954)

Stanislaw Ulam
Mathematician (1909-1984)

John von Neumann
Mathematician (1903-1957)

N. Metropolis
(1915 – 1999)

Physicist

A. Rosenbluth
(19?? – ????)
Programmer

M. Rosenbluth
(1927 – 2003)

Physicist

Augusta Teller
(19?? – ????)

Programmer(?)

Edward Teller
(1908 – 2003)

Physicist

Metropolis-Hastings Markov Chain Monte Carlo Technique

Wilfred Hastings 
(1930 – 2016)

Statistician



The Metropolis-Hastings Algorithm
Setup a random walker such that visits every point in the domain of the objective function proportional 

to the height of the point.

Example Metropolis random walker with small steps
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The Art of MH-MCMC Sampling – Finding the optimal comprise between efficiency and mixing

Large Steps → Low–Efficiency Sampler, Good Mixing Results (almost i.i.d. samples)  

Small Steps → High–Efficiency Sampler, Bad Mixing Results (not i.i.d. samples) 

good bad

bad good



Existing Monte Carlo software

• C/C++: MCSim, QUESO, TensorFlow
• MATLAB: mcmcstat, 
• Python: pymcmcstat, PyMC3, emcee, pystan, Zeus
• R: FME, mcmc, MCMCpack, greta
• Java: Keanu
• Julia: Turing.jl, Mamba.jl

• Fortran: DREAM, mcmcf90 (by the original author 
of the Adaptive Metropolis algorithm)

Fatemeh Bagheri
Physicist, UTA

Travis Driver
Aerospace, Georgia Tech

Shashank Kumbhare
Physics, UTA

Joshua Osborne
Physics, UTA

cdslab.org/pm



The ParaMonte library features and design goals
• Open-source, currently comprised of ~130,000 lines of code in 

• Fortran (50%)
• MATLAB (25%)
• Python (15%)
• Other (10% - C, Cmake, Shell, Batch, …)

• A package addressing some of the major weaknesses of the existing Monte Carlo software.

• The design philosophy of the ParaMonte library:
• Full automation of all Monte Carlo simulations to the highest levels possible to ensure the highest 

level of user-friendliness of the library and minimal time investment requirements for building, 
running, and post-processing of simulation models.

• Interoperability of the core library with as many programming languages as currently possible, 
including C/C++, Fortran, MATLAB, Python, with ongoing efforts to support other popular 
programming languages.

• High-Performance meticulously-low-level implementation of the library to ensure the fastest-possible 
Monte Carlo simulations.

• Parallelizability of all simulations via two-sided and one-sided MPI/Coarray communications while 
requiring zero-parallel-coding efforts by the user.

• Zero-dependence on external libraries to ensure hassle-free ParaDRAM simulation builds and runs.

• Fully-deterministic reproducibility and automatically-enabled restart functionality for all simulations 
up to 16 digits of precision if requested by the user.

• Comprehensive-reporting and post-processing of each simulation and its results, as well as their 
automatic compact storage in external files to ensure the simulation results will be comprehensible 
and reproducible at any time in the distant future.



The ParaMonte library features and design goals

• Why (Modern) Fortran? 
• Reliable backward-compatible language for decades.

• High performance (as opposed to higher-level programming languages).

• High-level easy-to-learn (as opposed to C/C++) modularized Object-Oriented language.

• Native support for scalable parallelism (via Coarrays), mature support for MPI/OpenMP.

• Native support for many frequently needed numerical objects (arrays), kinds, types, and functions.

• Excellent standardized interoperability features enabling seamless interactions with other programming 
languages.

• All of the above enables the development of one Application Programming Interface (API) for access from 
all programming languages.

• The library’s kernel routines are all implemented in pure Fortran.

• Wrappers in C/C++, Fortran, MATLAB, Python, … provide virtually identical interfaces to the library.

OpenCoarrays

Inspired by



DEMO

A good example is worth a thousand lines of documentation



Performance comparison of the parallel versions of ParaMonte

Many Monte Carlo algorithms (e.g., the Markov Chain Monte Carlo) are inherently sequential.



Performance comparison of the parallel versions of ParaMonte

The Fork-Join parallelism



Performance comparison of the parallel versions of ParaMonte



The ParaMonte library development design and goals
• Strict semantic compliance with the latest Fortran standard (2018).
• Strict source-code compliance with the latest Fortran standard.

• Strict parallelism compliance with the Fortran standard (via coarrays).

• Strict naming convention enforced within the entire library.

• Source code should be self-explanatory with minimal need for comments

• camelCase enforced within the entire library (except constants): outputUnit

• Naturally distinguishes Fortran’s intrinsic entities from the developer’s (output_unit).
• Allows extremely long multi-segment variable names within the 63 character limit of Fortran.

• Functions / subroutines always begin with a verb: getCovarianceMatrix

• Logical functions always begin with is: isDigit()

• All scalar variables begin with lower-case character, otherwise upper-case: MyMatrix, myScalar

• All logical variables must be English propositions that evaluate to true or false: inputFileHasPriority

• All Coarray variables must begin with co_ : co_LogFunc

• All module variables must begin with mv_ : mv_State, comv_LogFuncState

• All constants (parameters) are upper-case separated by underscore: FILE_EXT = ‘.txt’

• All module names must end with _mod: ParaMCMC_mod

• All derived type names must end with _type: ParaMCMC_type

too restrictive: max line length limit 132 chars

1. poor compiler support for 
advanced features, 

2. incompatibility with DLL / 
shared library packaging

incompatibility with template 
metaprogramming via Fortran/C 
preprocessor.



Modern Fortran features used in the ParaMonte library
• object-oriented features of F2003.
• automatic allocation/reallocation of arrays in F2003.
• iso_fortran_env (int8, int16, int32, in64, real32, real64, real128, compiler_version(), compiler_options(), 

output_unit, IO errors, ...) of F2008.
• do-concurrent of F2008.
• coarray one-sided parallelism paradigm of F2008 and F2018.
• block-construct of F2008 (enabling declaration of new variables at any line of the code).
• the g0 edit descriptor of F2008, a true time-saver for simplifying I/O, in particular, CSV file I/O.
• automatically (re)allocatable characters and (re)allocatable components of F2008.
• the new array constructor style of F2003 ( [ ] vs. old-style (/ /) ). 
• the remarkable new C-interoperability features of F2003, F2008, F2018, such as iso_c_binding, bind(), 

contiguous attribute, C-interoperable optional procedure arguments, .... Without these, communication with 
other languages, including C/C++, Julia, MATLAB, Python, R, … would have been almost impossible.

• the new attributes of the allocate statement (mold, source, ...) of F2008.
• intrinsic support for mathematical functions (Bessel, erf, erfc, log_gamma, norm2, ...) in F2008.
• type-bound procedures of F2003, and its enhancements in F2008 and beyond. extremely useful.
• get_environment_variable(), execute_command_line(), command_argument_count(), 

get_command_argument(), get_command(), and new array searching features like findloc(), ... in F2008.
• maximum variable length increase to 63 characters in F2003.
• ieee_exceptions, ieee_arithmetic modules for exception handling.
• move_alloc() in F2003.
• namelist IO.
• …



The ParaMonte library roadmap

ParaMonte

ParaDRAM

Based on the concept of 
Delayed-Rejection Adaptive 

Metropolis-Hastings

ParaDISE

Based on the concept of 
Delayed-Rejection Adaptive 

Metropolis-Hastings

ParaTemp

Based on the concept of 
multiple parallel interacting 

MCMC chains

ParaNest

Based on the concept of 
Nested sampling
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Desired enhancements to the Fortran language

• the ability to use the non-present optional arguments without defining a substitute (Python-style). 

• Coarray interoperation: the ability to use CAF in shared (no_main) library files (DLL, so, dylib).

• Coarray slicing ( MPI_gather )

• enhanced module readability and usage (Python-style module usage).

• standardized support for a minimal healthy subset of the C/Fortran preprocessing features.

• further support for template metaprogramming.



• ParaMonte is a pure standard-complaint Fortran library with the following design philosophy:
• open-source available at: https://github.com/cdslaborg/paramonte   
• Documentation available at: cdslab.org/pm
• Full automation of all Monte Carlo simulations (to ensure user-friendliness).
• Interoperability of the core library with C/C++, Fortran, MATLAB, Python, (Java, Julia, Mathematica, R).

• High-Performance meticulously-low-level implementation of the library to ensure the fastest-possible 
Monte Carlo simulations.

• Parallelizability via MPI / Coarray while requiring zero-parallel-coding efforts by the user.

• Zero-dependence on external libraries.

• Fully-deterministic reproducibility into the future and automatically-enabled restart functionality.

• Comprehensive-reporting and post-processing of each simulation and its results.

• The next major future release(s) will include: 

• ParaDISE (Parallel Delayed-Rejection Adaptive Markov Chain Monte Carlo on steriod).

• ParaTemp (Parallel Tempering for stochastic integration and Bayesian model selection)

• ParaNest (Parallel Nested sampling for stochastic integration and Bayesian model selection)

• ParaHDMC (Parallel Hamiltonian Dynamics Markov Chain Monte Carlo)

• Join us in this effort! Email: shahmoradi@utexas.edu

Summary
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