
Amir Shahmoradi, Fatemeh Bagheri,
Shashank Kumbhare, Joshua Osborne

Department of Physics / College of Science
Data Science Program / College of Science

The University of Texas
Arlington, Texas

1st International Fortran Conference, July 2020

ParaMonte
Plain Powerful Parallel

Monte Carlo Fortran Library
for all programming languages: C, C++, Fortran, MATLAB, Python, …

The Computational and Data Science Lab @ Department of Physics / College of Science / UTA

Physics of Gamma-Ray Bursts
The most powerful explosions in the universe

Join us @ cdslab.org

× 16,000,000,000 slowed-down simulation of
“hemagglutinin” protein of the Flu virus.

Bioinformatics / Biophysics

Biomedical Data Science

Stroke lesion (darker region on the
left side of Brain)

Machine-Learned
segmentation of Stroke

Open-source software development:
Machine Learning and Monte Carlo Methods

cdslab.org/pm

Traffic Engineering

adaptive stochastic
sampling methods

adaptive stochastic
integration methods

The two classical pillars of science: Experiment and Theory

A very elementary depiction of the scientific method

How do we make a scientific inference?

The prediction pyramid

(Shahmoradi 2017)

How to find the best solution?

• Define an objective function, indicating how good
each solution is.

• Optimize the function (parameter tuning), or,

• Sample the function (uncertainty quantification), or,

• Integrate the function (model selection).

A scientific inference toy problem

Hypothesis: Data comes from a
Normal distribution

Objective Function:

A scientific inference toy problem

Hypothesis: Data comes from a
Normal distribution

Objective Function:

A scientific inference toy problem

Hypothesis: Data comes from a
Normal distribution

Objective Function:

Hierarchical diagram of optimization, sampling, and integration methods

Stochastic Optimization
Methods

Stochastic Sampling
Methods

Stochastic
Integration Methods

The onion-like structure of stochastic optimization algorithms

Nested
Sampling

Parallel Tempering

Hierarchical diagram of optimization, sampling, and integration methods

Optimization techniques

Numerical

Stochastic

Q
uasi M

onte Carlo
Techniques

Random
ized quasi-

M
onte Carlo

Monte Carlo techniques
(Sampling / Integration)

Nested
Sampling

(NS)

Ellipsoidal N
S

Im
portance N

S

G
alilean N

S

Markov Chain Monte Carlo (MCMC)

Metropolis-Hastings (MH)

Annealing
Methods

Parallel Tem
pering

(Replica Exchange)

Therm
odynam

ic
Integration

Sim
ulated Tem

pering

Sim
ulated Annealing

M
ulticanonical
Sam

pling
W

ang-Landau M
ethod

Adaptive M
H

Delayed-Rejection M
H

Delayed-Rejection
Adaptive M

H (DRAM
)

M
etropolis

Slice Sam
pling

Ham
iltonian M

onte
Carlo

G
ibbs Sam

pling

M
ean Field Particle

M
ethods

Coupling from
 the past

N
on-Equilibrium

M

onte Carlo
Kinetic M

onte Carlo

G
illespie Algorithm

Variance Reduction

Im
portance Sam

pling
U

m
brella Sam

pling

VEG
AS Algorithm

Com
m

on Random

N
um

bers

control Variates

Antithetic Variates

Stratified Sam
pling

Acceptance-Rejection

Cross-Entropy M
ethod

Metaheuristics
(mostly discrete problems)

Evolutionary Algorithms

Estim
ation of

distribution

Sequential M
onte

Carlo

G
enetic Program

m
ing

G
ene expression
program

m
ing

Evolutionary
program

m
ing

Ant Colony

Particle Sw
arm

M
em

etic Algorithm

Harm
ony Search

Extrem
al O

ptim
ization

Variable N
eighborhood

Sim
ulated Annealing

Tabu
search

G
RASP

Deterministic

Constrained
optimization

Linear program
m

ing
Basis exchange

algorithm
s

Sim
plex

Criss-cross

Interior-Point M
ethods

Q
uadratic

program
m

ing
Sequential Q

uadratic
Program

m
ing

Augm
ented Lagrangian

M
ethods

N
onlinear

Program
m

ing
Interior-Point M

ethods

Unconstrained
optimization

Least-Squares
M

ethods
G

auss-N
ew

ton

Levenberg-M
arquardt

Line Search M
ethods

Trust Region M
ethods

Conjugate G
radient

M
ethods

Q
uasi-N

ew
ton

M
ethods

Derivative-Free
O

ptim
ization

Analytic

Hierarchical diagram of optimization, sampling, and integration methods

Optimization techniques

Numerical

Stochastic

Q
uasi M

onte Carlo
Techniques

Random
ized quasi-

M
onte Carlo

Monte Carlo techniques
(Sampling / Integration)

Nested
Sampling

(NS)

Ellipsoidal N
S

Im
portance N

S

G
alilean N

S

Markov Chain Monte Carlo (MCMC)

Metropolis-Hastings (MH)

Annealing
Methods

Parallel Tem
pering

(Replica Exchange)

Therm
odynam

ic
Integration

Sim
ulated Tem

pering

Sim
ulated Annealing

M
ulticanonical
Sam

pling
W

ang-Landau M
ethod

Adaptive M
H

Delayed-Rejection M
H

Delayed-Rejection
Adaptive M

H (DRAM
)

M
etropolis

Slice Sam
pling

Ham
iltonian M

onte
Carlo

G
ibbs Sam

pling

M
ean Field Particle

M
ethods

Coupling from
 the past

N
on-Equilibrium

M

onte Carlo
Kinetic M

onte Carlo

G
illespie Algorithm

Variance Reduction

Im
portance Sam

pling
U

m
brella Sam

pling

VEG
AS Algorithm

Com
m

on Random

N
um

bers

control Variates

Antithetic Variates

Stratified Sam
pling

Acceptance-Rejection

Cross-Entropy M
ethod

Metaheuristics
(mostly discrete problems)

Evolutionary Algorithms

Estim
ation of

distribution

Sequential M
onte

Carlo

G
enetic Program

m
ing

G
ene expression
program

m
ing

Evolutionary
program

m
ing

Ant Colony

Particle Sw
arm

M
em

etic Algorithm

Harm
ony Search

Extrem
al O

ptim
ization

Variable N
eighborhood

Sim
ulated Annealing

Tabu
search

G
RASP

Deterministic

Constrained
optimization

Linear program
m

ing
Basis exchange

algorithm
s

Sim
plex

Criss-cross

Interior-Point M
ethods

Q
uadratic

program
m

ing
Sequential Q

uadratic
Program

m
ing

Augm
ented Lagrangian

M
ethods

N
onlinear

Program
m

ing
Interior-Point M

ethods

Unconstrained
optimization

Least-Squares
M

ethods
G

auss-N
ew

ton

Levenberg-M
arquardt

Line Search M
ethods

Trust Region M
ethods

Conjugate G
radient

M
ethods

Q
uasi-N

ew
ton

M
ethods

Derivative-Free
O

ptim
ization

Analytic

Monte Carlo methods: A brief history

Enrico Fermi
Physicist (1901-1954)

Stanislaw Ulam
Mathematician (1909-1984)

John von Neumann
Mathematician (1903-1957)

Electronic Numerical Integrator And Computer (ENIAC)

Fermi’s Analog Computer (FERMIAC)

Monte Carlo methods: A brief history

Enrico Fermi
Physicist (1901-1954)

Stanislaw Ulam
Mathematician (1909-1984)

John von Neumann
Mathematician (1903-1957)

N. Metropolis
(1915 – 1999)

Physicist

A. Rosenbluth
(19?? – ????)
Programmer

M. Rosenbluth
(1927 – 2003)

Physicist

Augusta Teller
(19?? – ????)

Programmer(?)

Edward Teller
(1908 – 2003)

Physicist

Metropolis-Hastings Markov Chain Monte Carlo Technique

Wilfred Hastings
(1930 – 2016)

Statistician

The Metropolis-Hastings Algorithm
Setup a random walker such that visits every point in the domain of the objective function proportional

to the height of the point.

Example Metropolis random walker with small steps

The Metropolis-Hastings Algorithm
Setup a random walker such that visits every point in the domain of the objective function proportional

to the height of the point.

Example Metropolis random walker with large steps

The Art of MH-MCMC Sampling – Finding the optimal comprise between efficiency and mixing

Large Steps → Low–Efficiency Sampler, Good Mixing Results (almost i.i.d. samples)

Small Steps → High–Efficiency Sampler, Bad Mixing Results (not i.i.d. samples)

good bad

bad good

Existing Monte Carlo software

• C/C++: MCSim, QUESO, TensorFlow
• MATLAB: mcmcstat,
• Python: pymcmcstat, PyMC3, emcee, pystan, Zeus
• R: FME, mcmc, MCMCpack, greta
• Java: Keanu
• Julia: Turing.jl, Mamba.jl

• Fortran: DREAM, mcmcf90 (by the original author
of the Adaptive Metropolis algorithm)

Fatemeh Bagheri
Physicist, UTA

Travis Driver
Aerospace, Georgia Tech

Shashank Kumbhare
Physics, UTA

Joshua Osborne
Physics, UTA

cdslab.org/pm

The ParaMonte library features and design goals
• Open-source, currently comprised of ~130,000 lines of code in

• Fortran (50%)
• MATLAB (25%)
• Python (15%)
• Other (10% - C, Cmake, Shell, Batch, …)

• A package addressing some of the major weaknesses of the existing Monte Carlo software.

• The design philosophy of the ParaMonte library:
• Full automation of all Monte Carlo simulations to the highest levels possible to ensure the highest

level of user-friendliness of the library and minimal time investment requirements for building,
running, and post-processing of simulation models.

• Interoperability of the core library with as many programming languages as currently possible,
including C/C++, Fortran, MATLAB, Python, with ongoing efforts to support other popular
programming languages.

• High-Performance meticulously-low-level implementation of the library to ensure the fastest-possible
Monte Carlo simulations.

• Parallelizability of all simulations via two-sided and one-sided MPI/Coarray communications while
requiring zero-parallel-coding efforts by the user.

• Zero-dependence on external libraries to ensure hassle-free ParaDRAM simulation builds and runs.

• Fully-deterministic reproducibility and automatically-enabled restart functionality for all simulations
up to 16 digits of precision if requested by the user.

• Comprehensive-reporting and post-processing of each simulation and its results, as well as their
automatic compact storage in external files to ensure the simulation results will be comprehensible
and reproducible at any time in the distant future.

The ParaMonte library features and design goals

• Why (Modern) Fortran?
• Reliable backward-compatible language for decades.

• High performance (as opposed to higher-level programming languages).

• High-level easy-to-learn (as opposed to C/C++) modularized Object-Oriented language.

• Native support for scalable parallelism (via Coarrays), mature support for MPI/OpenMP.

• Native support for many frequently needed numerical objects (arrays), kinds, types, and functions.

• Excellent standardized interoperability features enabling seamless interactions with other programming
languages.

• All of the above enables the development of one Application Programming Interface (API) for access from
all programming languages.

• The library’s kernel routines are all implemented in pure Fortran.

• Wrappers in C/C++, Fortran, MATLAB, Python, … provide virtually identical interfaces to the library.

OpenCoarrays

Inspired by

DEMO

A good example is worth a thousand lines of documentation

Performance comparison of the parallel versions of ParaMonte

Many Monte Carlo algorithms (e.g., the Markov Chain Monte Carlo) are inherently sequential.

Performance comparison of the parallel versions of ParaMonte

The Fork-Join parallelism

Performance comparison of the parallel versions of ParaMonte

The ParaMonte library development design and goals
• Strict semantic compliance with the latest Fortran standard (2018).
• Strict source-code compliance with the latest Fortran standard.

• Strict parallelism compliance with the Fortran standard (via coarrays).

• Strict naming convention enforced within the entire library.

• Source code should be self-explanatory with minimal need for comments

• camelCase enforced within the entire library (except constants): outputUnit

• Naturally distinguishes Fortran’s intrinsic entities from the developer’s (output_unit).
• Allows extremely long multi-segment variable names within the 63 character limit of Fortran.

• Functions / subroutines always begin with a verb: getCovarianceMatrix

• Logical functions always begin with is: isDigit()

• All scalar variables begin with lower-case character, otherwise upper-case: MyMatrix, myScalar

• All logical variables must be English propositions that evaluate to true or false: inputFileHasPriority

• All Coarray variables must begin with co_ : co_LogFunc

• All module variables must begin with mv_ : mv_State, comv_LogFuncState

• All constants (parameters) are upper-case separated by underscore: FILE_EXT = ‘.txt’

• All module names must end with _mod: ParaMCMC_mod

• All derived type names must end with _type: ParaMCMC_type

too restrictive: max line length limit 132 chars

1. poor compiler support for
advanced features,

2. incompatibility with DLL /
shared library packaging

incompatibility with template
metaprogramming via Fortran/C
preprocessor.

Modern Fortran features used in the ParaMonte library
• object-oriented features of F2003.
• automatic allocation/reallocation of arrays in F2003.
• iso_fortran_env (int8, int16, int32, in64, real32, real64, real128, compiler_version(), compiler_options(),

output_unit, IO errors, ...) of F2008.
• do-concurrent of F2008.
• coarray one-sided parallelism paradigm of F2008 and F2018.
• block-construct of F2008 (enabling declaration of new variables at any line of the code).
• the g0 edit descriptor of F2008, a true time-saver for simplifying I/O, in particular, CSV file I/O.
• automatically (re)allocatable characters and (re)allocatable components of F2008.
• the new array constructor style of F2003 ([] vs. old-style (/ /)).
• the remarkable new C-interoperability features of F2003, F2008, F2018, such as iso_c_binding, bind(),

contiguous attribute, C-interoperable optional procedure arguments, Without these, communication with
other languages, including C/C++, Julia, MATLAB, Python, R, … would have been almost impossible.

• the new attributes of the allocate statement (mold, source, ...) of F2008.
• intrinsic support for mathematical functions (Bessel, erf, erfc, log_gamma, norm2, ...) in F2008.
• type-bound procedures of F2003, and its enhancements in F2008 and beyond. extremely useful.
• get_environment_variable(), execute_command_line(), command_argument_count(),

get_command_argument(), get_command(), and new array searching features like findloc(), ... in F2008.
• maximum variable length increase to 63 characters in F2003.
• ieee_exceptions, ieee_arithmetic modules for exception handling.
• move_alloc() in F2003.
• namelist IO.
• …

The ParaMonte library roadmap

ParaMonte

ParaDRAM

Based on the concept of
Delayed-Rejection Adaptive

Metropolis-Hastings

ParaDISE

Based on the concept of
Delayed-Rejection Adaptive

Metropolis-Hastings

ParaTemp

Based on the concept of
multiple parallel interacting

MCMC chains

ParaNest

Based on the concept of
Nested sampling

The ParaMonte library roadmap

ParaMonte

ParaDRAM

Based on the concept of
Delayed-Rejection Adaptive

Metropolis-Hastings

ParaDISE

Based on the concept of
Delayed-Rejection Adaptive

Metropolis-Hastings

ParaTemp

Based on the concept of
multiple parallel interacting

MCMC chains

ParaNest

Based on the concept of
Nested sampling

The ParaMonte library roadmap

ParaMonte

ParaDRAM

Based on the concept of
Delayed-Rejection Adaptive

Metropolis-Hastings

ParaDISE

Based on the concept of
Delayed-Rejection Adaptive

Metropolis-Hastings

ParaTemp

Based on the concept of
multiple parallel interacting

MCMC chains

ParaNest

Based on the concept of
Nested sampling

The ParaMonte library roadmap

ParaMonte

ParaDRAM

Based on the concept of
Delayed-Rejection Adaptive

Metropolis-Hastings

ParaDISE

Based on the concept of
Delayed-Rejection Adaptive

Metropolis-Hastings

ParaTemp

Based on the concept of
multiple parallel interacting

MCMC chains

ParaNest

Based on the concept of
Nested sampling

Desired enhancements to the Fortran language

• the ability to use the non-present optional arguments without defining a substitute (Python-style).

• Coarray interoperation: the ability to use CAF in shared (no_main) library files (DLL, so, dylib).

• Coarray slicing (MPI_gather)

• enhanced module readability and usage (Python-style module usage).

• standardized support for a minimal healthy subset of the C/Fortran preprocessing features.

• further support for template metaprogramming.

• ParaMonte is a pure standard-complaint Fortran library with the following design philosophy:
• open-source available at: https://github.com/cdslaborg/paramonte
• Documentation available at: cdslab.org/pm
• Full automation of all Monte Carlo simulations (to ensure user-friendliness).
• Interoperability of the core library with C/C++, Fortran, MATLAB, Python, (Java, Julia, Mathematica, R).

• High-Performance meticulously-low-level implementation of the library to ensure the fastest-possible
Monte Carlo simulations.

• Parallelizability via MPI / Coarray while requiring zero-parallel-coding efforts by the user.

• Zero-dependence on external libraries.

• Fully-deterministic reproducibility into the future and automatically-enabled restart functionality.

• Comprehensive-reporting and post-processing of each simulation and its results.

• The next major future release(s) will include:

• ParaDISE (Parallel Delayed-Rejection Adaptive Markov Chain Monte Carlo on steriod).

• ParaTemp (Parallel Tempering for stochastic integration and Bayesian model selection)

• ParaNest (Parallel Nested sampling for stochastic integration and Bayesian model selection)

• ParaHDMC (Parallel Hamiltonian Dynamics Markov Chain Monte Carlo)

• Join us in this effort! Email: shahmoradi@utexas.edu

Summary

	Slide Number 1
	The Computational and Data Science Lab @ Department of Physics / College of Science / UTA
	The two classical pillars of science: Experiment and Theory
	A scientific inference toy problem
	A scientific inference toy problem
	A scientific inference toy problem
	Hierarchical diagram of optimization, sampling, and integration methods
	Hierarchical diagram of optimization, sampling, and integration methods
	Hierarchical diagram of optimization, sampling, and integration methods
	Monte Carlo methods: A brief history
	Monte Carlo methods: A brief history
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	The ParaMonte library roadmap
	The ParaMonte library roadmap
	The ParaMonte library roadmap
	The ParaMonte library roadmap
	Desired enhancements to the Fortran language
	Slide Number 29

