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OPENACC DIRECTIVES

a directive-based parallel programming model designed for
usability, performance, and portability
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OpenACC Directives

I\D/I:trjaage/y l$acc data copyin(a,b) copyout(c) o Incremental
Movement » Single source
l$acc parallel
::;[ri:rleel / l$acc loop gang vector ? |nter0perab|e
do i = 0,
Execution D (L) = a(1) + b(i)s » Performance portable
- end do » CPU, GPU, and more
(L)(I)Jégmze l$acc end parallel

Mappings !$;;éé end data OpenAcc

Directives for Accelerators
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THE ROLE OF DIRECTIVES FOR
PARALLEL PROGRAMMING

| | Parallel
Serial Programming Programming
Languages g Languages




PARALLEL PROGRAMMING CONCERNS

What

Why

Express Parallelism

What can and should be run in parallel?

Optimize Parallelism

How can | execute faster on the parallel hardware | have?

Manage Compute Locality

Executing on the local compute core isn’t enough. Threading and
offloading are now the norm.

Manage Data Locality

Memory is no longer simple and flat. Memory has hierarchies, which are
made even more complex when considering heterogenous architectures.

Asynchronous Operations

Asynchronicity is increasingly required to cover various overheads.



EXPRESS PARALLELISM IN OPENACC

What can and should be run in parallel?

!Sacc parallel (or kernels) Assert data-independence to the
!Sacc loop independent compiler (can be run in parallel)

do 1i=1,N : : :

ocl(i) = A(i) + B(i) ldentify parallelism-blockers (private,
B reduction, atomic)
end do
Hint a desire for the iterations to be
Not shown here: run in parallel (should be run in
Private Clause parallel)

Reduction Clause
Atomic directive

9 <ANVIDIA.



EXPRESS PARALLELISM IN FORTRAN 2018

What can and should be run in parallel?

do concurrent (i=1:N)
C(i) = A(1i) + B(1i)
end do

C(:) = A(:) + B(:)
Not shown here:

Local Clause
Other intrinsics

Assert ability for iterations to be run
in any order (possibly concurrently)

|dentify privatization of variables, if
necessary

Currently no loop-level reduction or
atomics

10 <ANVIDIA.



OPTIMIZE PARALLELISM IN OPENACC

How can it run better in parallel?

!Sacc loop independent vector (128) Guide the compiler to better parallel
do i=1,N decomposition on a given hardware.
C(1) = A(1) + B(1)

Potentially transform loops to better
expose parallelism (collapse) or
locality (tile)

end do

Not shown here:
Collapse
Tile | |
Gang Only analogue in Fortran is re-
Worker structuring or changing compiler

?
Device_type Specification flags. Good enought

11 <ANVIDIA.



MANAGE COMPUTE LOCALITY IN OPENACC

Where should it be run in parallel?

!Sacc set device device num(0)
ISaccé device type (nvidia)
!Sacc parallel loop
do i=1,N

C(i) = A(i) + B(i)
end do

Not shown here:
Self clause
Serial or Kernels construct

Instruct the compiler where to
execute the region

Or leave it up to the runtime

Potentially execute on multiple
devices (including the host)
simultaneously

12
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MANAGE DATA LOCALITY IN OPENACC

Where should data live and for how long?

!Sacc data copyin(A,B)
I Saccé copyout (C)
!Sacc parallel loop
do i=1,N

C(i) = A(i) + B(i)
end do
!Sacc end data

Not shown here:
Unstructured data management
Update directive
Deep-copy
Device data interoperability
Cache directive

ldentify data structures that are
required when distinct memories
exist.

Reduce data motion between distinct
memories

Give compiler context for data reuse

13 <ANVIDIA.



DATA LOCALITY

Unified Memory and the Heterogenous Memory Manager (HMM)

Modern GPUs can handle paging memory to/from the GPU
automatically (locality matters)

HMM is a Linux kernel feature for exposing all memory in this
way (ubiquity matters)

Can the 99% work without explicitly optimizing memory locality?

SPEC ACCEL 1.2 OPENACC BENCHMARKS

OpenACC with Unified Memory vs OpenACC Data Directives
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ASYNCHRONOUS EXECUTION IN OPENACC

What can be run concurrently?

!Sacc update device (A) async(l) Expose dependence (or lack of)
!Sacc parallel loop async (1) between different regions
do i=1,N
oL . . Introduce potential for overlappin
C(x) = A1) + B(1) operationsp PP
end do
!Sacc update self(C) async(1) Increase overall system utilization

1Sacec wait (1)

15 <ANVIDIA.



PARALLEL PROGRAMMING CONCERNS

Fortran OpenACC

|dentify Parallelism V

Optimize
Parallelism

Manage Compute
Locality

Manage Data
Locality

Asynchronous ®

Operations

Good Enough?

ANANASNENAN




CLOVERLEAF V1.3

AWE Hydrodynamics mini-app

6500+ lines, 1$acc kernels

| OpenACC or OpenMP or do concurrent

\

http://uk-mac.github.io/CloverLeaf

Source on GitHub

17 <ANVIDIA.



FORTRAN WITH OPENACC DIRECTIVES

% pgfortran -fast -ta=tesla:managed -Minfo -c
PdV_kernel.f90
pdv_kernel:
77, Loop is parallelizable
79, Loop is parallelizable
Accelerator kernel generated
Generating Tesla code
77, !'$acc loop gang, vector(4) ! blockidxX%y
I threadidx%y
79, !$acc loop gang, vector(32)! blockidx%x
I threadidx%x

75
76
77
78

79
80
81
82
83
84
85
86
87
88
89
920
91
92
93
94
95
97
99
101
103
105
106
107

DO k=y_min,y_max

DO j=x_min,x_max

left_flux= (xarea(j ,k )*(xvelo(j ,k )+xvelo(j ,k+1) &
+xvelo(j ,k )+xvelo(j ,k+1)))*0.25 8*dt*@.5
right_flux= (xarea(j+1,k )*(xvelo(j+1,k )+xvelO(j+1,k+1) &
+xvelo(j+1,k )+xveld(j+1,k+1)))*0.25 8*dt*0.5
bottom_flux=(yarea(j ,k )*(yvelo(j ,k )+yvelo(j+i,k ) &
+yveld(j ,k )+yvelo(j+i,k )))*e0.25 8*dt*@.5
top_flux= (yarea(j ,k+1)*(yvelo(j ,k+1)+yvelo(j+1,k+1) &

+yveld(j ,k+1)+yvelo(j+1,k+1)))*0.25 8*dt*@.5
total_flux=right_flux-left_flux+top_flux-bottom_flux

volume_change(j,k)=volume(j, k)/(volume(j,k)+total_ flux)

min_cell_volume=MIN(volume(j,k)+right_flux-left_flux+top_flux-bottom_flux &
s,volume(j,k)+right_flux-left_flux &
s,volume(j,k)+top_flux-bottom_flux)

recip_volume=1.0/volume(j,k)

energy_change=(pressure(j,k)/densityo(j,k)+viscosity(j,k)/density@(j,k))*...

energyl(j,k)=energyo(j,k)-energy _change

densityl(j,k)=density@(j,k)*volume_change(j,k)

ENDDO
ENDDO

NVIDIA.



FORTRAN 2018 DO CONCURRENT

% pgfortran -fast -ta=tesla:managed -Minfo -c
PdV_kernel.f90
pdv_kernel:
77, Do concurrent is parallelizable
Accelerator kernel generated
Generating Tesla code
77, !'$acc loop gang, vector(4) ! blockidxX%y
I threadidx%y
I$acc loop gang, vector(32)! blockidx%x
I threadidx%x

75
76
77
78

79
80
81
82
83
84
85
86
87
88
89
920
91
92
93
94
95
97
99
101
103
105
106
107

left_flux= (xarea(j ,k )*(xvelo(j ,k )+xvelo(j ,k+1) &
+xvelo(j ,k )+xvelo(j ,k+1)))*0.25 8*dt*@.5
right_flux= (xarea(j+1,k )*(xvelo(j+1,k )+xvelO(j+1,k+1) &
+xvelo(j+1,k )+xveld(j+1,k+1)))*0.25 8*dt*0.5
bottom_flux=(yarea(j ,k )*(yvelo(j ,k )+yvelo(j+i,k ) &
+yveld(j ,k )+yvelo(j+i,k )))*e0.25 8*dt*@.5
top_flux= (yarea(j ,k+1)*(yvelo(j ,k+1)+yvelo(j+1,k+1) &

+yveld(j ,k+1)+yvelo(j+1,k+1)))*0.25 8*dt*@.5
total_flux=right_flux-left_flux+top_flux-bottom_flux

volume_change(j,k)=volume(j, k)/(volume(j,k)+total_ flux)

min_cell_volume=MIN(volume(j,k)+right_flux-left_flux+top_flux-bottom_flux &
s,volume(j,k)+right_flux-left_flux &
s,volume(j,k)+top_flux-bottom_flux)

recip_volume=1.0/volume(j,k)

energy_change=(pressure(j,k)/densityo(j,k)+viscosity(j,k)/density@(j,k))*...

energyl(j,k)=energyo(j,k)-energy _change

densityl(j,k)=density@(j,k)*volume_change(j,k)

NVIDIA.



FORTRAN 2018 DO CONCURRENT FOR V100

CloverLeaf AWE hydrodynamics mini-App, bm32 data set

M Intel 2019.5 OpenMP B IBM XL 16.1 OpenMP B PGI Dev DO CONCURRENT ™ PGI 19.10 OpenACC

—_
o

O

80X g.3x

oo

~N

o

N

w

1.8x

Speedup vs 2-socket Haswell node
(bigger is better)

1.9x 1.9Xx 2.0x 2.0x 2.0x

2-socket Skylake 2-socket Rome 2-socket POWER9 Skylake+1xV100

2
1
0

Systems: Skylake 2x20 core Xeon Gold server (perf-sky-6) one thread per core, Rome: Two 24 core AMD EPYC 7451 CPUs @ 2.9GHz w/ 256GB memory; POWER9 DD2.1 server (perf-wsn1) two threads per core

Compilers: Intel 2019.5.281, PGl 19.10, IBMXL 16.1.1.3
Benchmark: CloverLeaf v1.3 OpenACC, OpenMP and DoConcurrent versions downloaded from https://github.com/UoB-HPC the week of June 10, 2019

https://github.com/UoB-HPC/CloverlLeaf doconcurrent 20
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https://github.com/UoB-HPC/CloverLeaf_doconcurrent

THE FUTURE OF PARALLEL PROGRAMMING

Standard Languages | Directives | Specialized Languages

std: :for_each n(POL, idx(@), n,
[&] (Index_t 1) {
y[i] += a*x[i];

});

do concurrent (i = 1:n)

y(i) = y(i) + a*x(i)
enddo

I$acc data copy(x,y)

do concurrent (i = 1:n)

y(i) = y(i) + a*x(i)
enddo

I$acc end data

attribute (global)
subroutine saxpy(n, a, x, y) {
int 1 = blockIdx%$x*blockDim%x +
threadIdx%x;
if (i < n) y(i) += a*x(1i)
}

program main

real o x(:), y(:)
real,device :: d x(:), d y(:)
d x = x

dy=y

call saxpy

<<< (N+255) /256,256>>>(...)

Drive Base Languages to Better

Support Parallelism

Augment Base Languages with

Directives

Maximize Performance with

Specialized Languages & Intrinsics

21
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THE FUTURE OF PARALLEL PROGRAMMING

Standard Languages | Directives | Specialized Languages

std: :for_each n(POL, idx(@), n,
[&] (Index_t 1) {
y[i] += a*x[i];

});

do concurrent (i = 1:n)

y(i) = y(i) + a*x(i)
enddo

do concurrent (i = 1:n)

y(i) = y(i) + a*x(i)
enddo

attribute (global)
subroutine saxpy(n, a, x, y) {
int 1 = blockIdx%$x*blockDim%x +
threadIdx%x;
if (i < n) y(i) += a*x(1i)
}

program main

real o x(:), y(:)
real,device :: d x(:), d y(:)
d x = x

dy=y

call saxpy

<<< (N+255) /256,256>>>(...)

Drive Base Languages to Better

Support Parallelism

Augment Base Languages with
Directives

Maximize Performance with

Specialized Languages & Intrinsics

22
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THE FUTURE OF PARALLEL PROGRAMMING

Standard Languages | Directives | Specialized Languages

std: :for_each n(POL, idx(@), n,
[&] (Index_t 1) {
y[i] += a*x[i];

});

do concurrent (i = 1:n)

y(i) = y(i) + a*x(i)
enddo

I$acc parallel loop async
do concurrent (i = 1:n)

y(i) = y(i) + a*x(i)
enddo

attribute (global)
subroutine saxpy(n, a, x, y) {
int 1 = blockIdx%$x*blockDim%x +
threadIdx%x;
if (i < n) y(i) += a*x(1i)
}

program main

real o x(:), y(:)
real,device :: d x(:), d y(:)
d x = x

dy=y

call saxpy

<<< (N+255) /256,256>>>(...)

Drive Base Languages to Better

Support Parallelism

Augment Base Languages with
Directives

Maximize Performance with

Specialized Languages & Intrinsics
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FUTURE DIRECTIONS FOR OPENACC AND FORTRAN

DO CONCURRENT - Is this ready for widespread use? Is it enough?

Fortran reductions - Critical for many OpenACC applications. Significant restructuring
otherwise.

Co-Arrays - How do they fit into this picture?

Are there other gaps that need filling? What are our common challenges?

How can the OpenACC and Fortran communities work together more closely?

feedback@openacc.org

24 <ANVIDIA.
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Incorporation

ORNL asks CAPS,
Cray, & PGI to unify
efforts with the help
of NVIDIA

OpenACC 1.0

Basic parallelism,
structured data, and
async/wait semantics

A BRIEF HISTORY OF OPENACC

OpenACC 2.0

Unstructured Data
Lifetimes, Routines,
Atomic, Clarifications
& Improvements

v

OpenACC 2.5

Reference Counting,
Profiling Interface,
Additional
Improvements from
User Feedback

v

OpenACC 2.6

Serial Construct,
Attach/Detach
(Manual Deep Copy),
Misc. User Feedback

OpenACC 2.7

Compute on Self,
readonly, Array
Reductions, Lots of

Clarifications, Misc.

User Feedback

OpenACC 3.0

Updated Base
Languages, C++
Lambdas, Zero
modifier, Improved
multi-device support

v
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