NVIDIA.

HIGHLY PARALLEL
FORTRAN AND OPENACC
DIRECTIVES

Jeff Larkin <jlarkin@nvidia.com> Sr. DevTech Software Engineer, OpenACC o

‘*“":,1 Co&mlttee Chair
N

Michael Wolfe <mwolfe@nvidia.com> Compiler Engineer ¢

OPENACC DIRECTIVES

a directive-based parallel programming model designed for
usability, performance, and portability

3 OF TOP 5 HPC 18% OF INCITE AT SUMMIT PLATFORMS SUPPORTED

Intersebt3 60

RESEARCH

/A'\
summil

NVIDIA GPU
X86 CPU
POWER CPU
Sunway
ARM CPU
AMD GPU

OPENACC APPS OPENACC SLACK MEMBERS >200K DOWNLOADS

39

236

ﬁw///mT’/’

ISC17 S

1154

692
361
150 305 I
=]]
C17 ISC18 SC18 ISC19

1724

SC19

PGl

Community

—— EDITION EE—

3 <ANVIDIA.

GAUSSIAN 16

.‘
2 ’) e 7
o2 (e e
‘ "‘ "} 4 . ! I . 3 ‘
v . N Pre . I .
: » -"v" 4 ‘t’ ‘ R t ?
s ey 1 e i I e
o oy Gaussiarn, | > |
‘ : .‘/ g g
- . Using OpenACC allowad us to continue : W & 5 A
& v ; EA development of our fundamental SR We've effectively used W ForVASP, Oy A o A e e b
oo %2, L : disi forward for GPU acceleration. develop for GPU-based hardware
’ > e algorithms and software capabilities OpenACC for heterogencous AT 2 3 R e
" LSO o .’ r simultaneously with the GPU-related o Performance is similar and in some while retaining a single source for
oo ¥, 5 computing in ANSYS Fluent cases better than CUDA C. and :
f ” woark. In the end, we could use the with impressive performance 2 g almost all the COSMO physics
ovew e e R : mp perion : OpenaCC dramatically decreases cade.
We're now applying this work GPU development and maintenance

L network and GPU paralleism, PGI's
compilers were essential to the sucoess
of our efforts,

)

ANSYS FLUENT

effoets. We're excited to collaborate
with NVIDIA and PGI as an carly
adopter of CUDA Unified Memory.

to more of our models and
new platforms.

SYNOPSYS

b]

Lo -

COSMO

‘ . E |
k) “os, iy i s /9 ’..‘5“&:_-
The CAAR project pravided us with W - Parling our unsliuctured C++ Using OpenaACC, we've GPU- (:‘\ s - %ur ,tjam has beet;\mevaluating
T early acoess Lo Summil. hardware and CED solver FINE/Open to GPUs fuad T DpenACC as a pathway to
arcess ta PGl compiler experts. Bath Sl P i ho mlmtﬁg:hf Smw; E:D _.\ (P performance portability for the Model
aof these were critical to our success. us ng. pen) would have Sentaurus V‘" ; simi : tor - for F’rcdwpon [WAS] atrmospheric
PGI's DpendCC support temaing (e been impossible two or three to speed up optical simulations of \ - 4 Mmgzgl. Us‘nn%c;'}li gf:towa;d':ao:lethe
best available and is competitive with years ago, but OpenACC has lmago sensors. G?Us are key to - nrhip\-dpd.wamfmmnc; Sisalrl,
fch more MU prosvanining developed enough that we're improving simulation throughput w P100 GPU exgivalent 1o 2.7 dual
medel approaches. in the design of advanced image socketed Intel Xeon nodes on our new

naw getting some really good

results. Cheyenne supercomputer. —

sensors.

ATO9Z coanTey D0k RSP0 fade ey Catovatay

GAMERA

b LR 45 &) 15

With OpenACC and a compute
node based on NVIDIA's Tesla
P100 GPU, we achieved more
than a 14X speed up over a K

VMD

= | ahrSian
‘ — , ‘vi Res -,::‘w,‘Z‘ Proct

Using OpenACC our scientists
were able to achieve the
acceleration needed for
integrated fusion simulation with

Due to Amdahls law, we need ta port

S5 B more parts af aur code to the GPU if were
going to speed 1t up. But the sheer
number of routines pasas a challenge.
OpenaCC directives give us a low-cost

approach b getting at least same speed- a minimum investment of time ence, Lags "SI min] i

up out of these second-tier routmes. In and effort in learning to program Computer “0‘."-' m"““'.‘i 1t

many casas it's completely sufficient GPUs earthquake disaster simulation

' md! ‘Hl "”m

because with the cument algorithms, GRU
performance is bandwidth-bound. = -

PWscf (Quantum
ESPRESSO)

IBM-CFD MAS

Adding OpenACC into MAS has given us

In an academic environment

SR malntenance and speedup of existing
codes is a tedious task. OpenACC
provides a great plattorm for
compitabonal sclentiats 1o accomplisn
both {asks wihout involving & lot of
efforts ar manpawer In speeding up the
entire computationa! task.

DpsnALC G prove (o be a nandy ool for

S8 BN computaticnal engineers and researchers 10
obtain fast sohmon of non-linear dyramics
praficm in mmerses boundary iIncompressbie
CFD, we hinwe: ahtained cedar of magnimade
1EUton I compuling Ume by poring Severdl
Componends of o lagacy codes o GPU

CUDA Fortran gives us the full
performance potential of the CUDA

data movement, ISCUF KERNELS
dieclives give 15 productadly and

programming model and NVIDIA GPUS,
White leveraging the: polenbal of exphol

sowrce code mandanatity. I1's the best
of both woddds

Espociaily the reutings wolving scareh agarthm
and mavte sohvers hawe hoen vel-accoloratod 10

o e ower bl scakeelity of e pode ™

B the abitity to migrate medium-sized

simulations from a multi node CPU

chinter 10 a single multi-GPU server .
Thes inplementation yielded a portable
single-source code for both CPU and

GPU runs. Future work will add
OpenACC to the remaining model

features, cnabling GPU-accelerated

realistic solar storm modcling.

OpenACC Members
Qe € cmes amba BRINCAR AlExZ |CPOCCH

™ National Laboraton nviblA. e e OSAKA UNIVERSITY

& s M w A =
'SP /\| ! O
CONC BERKELEY LAB SUSE " KAUST sk aNmsiisie £ verumourz

ZEMTRUM DRESOEM
CENTER FOR DEVELOPMENT OF

ADVANCED COMPUTING g oty ‘ RESSENDORE TOTAL

UNIVERSITY of RS T Yor . Stonv Brook
HOUSTON Gmpﬂ EIAWARE, H [LLINOIS q\% University

*-—%xm LINVLRETY OF ILLINOMS AT
R -

Tokyo Institute of Technology
&Dg%ﬂ?ﬂ ‘\ ‘_‘Z, 5”. I'I'I a #) ?)
@ vivky) mmmmmaos ([JVirginiaTech ~ BROOKHAVEN 17| MarveLL
vl =
TECHNISCHE ’
ETH:zurich UNIVERSITAT NLHL p @ || R
DRESDEN aize R-CCS MICHIGAN STATE

UNIVERSITY

OpenACC

OpenACC Directives

I\D/I:trjaage/y l$acc data copyin(a,b) copyout(c) o Incremental
Movement » Single source
l$acc parallel
::;[ri:rleel / l$acc loop gang vector ? |nter0perab|e
do i = 0,
Execution D (L) = a(1) + b(i)s » Performance portable
- end do » CPU, GPU, and more
(L)(I)Jégmze l$acc end parallel

Mappings !$;;éé end data OpenAcc

Directives for Accelerators

6 <ANVIDIA.

THE ROLE OF DIRECTIVES FOR
PARALLEL PROGRAMMING

| | Parallel
Serial Programming Programming
Languages g Languages

PARALLEL PROGRAMMING CONCERNS

What

Why

Express Parallelism

What can and should be run in parallel?

Optimize Parallelism

How can | execute faster on the parallel hardware | have?

Manage Compute Locality

Executing on the local compute core isn’t enough. Threading and
offloading are now the norm.

Manage Data Locality

Memory is no longer simple and flat. Memory has hierarchies, which are
made even more complex when considering heterogenous architectures.

Asynchronous Operations

Asynchronicity is increasingly required to cover various overheads.

EXPRESS PARALLELISM IN OPENACC

What can and should be run in parallel?

!Sacc parallel (or kernels) Assert data-independence to the
!Sacc loop independent compiler (can be run in parallel)

do 1i=1,N : : :

ocl(i) = A(i) + B(i) ldentify parallelism-blockers (private,
B reduction, atomic)
end do
Hint a desire for the iterations to be
Not shown here: run in parallel (should be run in
Private Clause parallel)

Reduction Clause
Atomic directive

9 <ANVIDIA.

EXPRESS PARALLELISM IN FORTRAN 2018

What can and should be run in parallel?

do concurrent (i=1:N)
C(i) = A(1i) + B(1i)
end do

C(:) = A(:) + B(:)
Not shown here:

Local Clause
Other intrinsics

Assert ability for iterations to be run
in any order (possibly concurrently)

|dentify privatization of variables, if
necessary

Currently no loop-level reduction or
atomics

10 <ANVIDIA.

OPTIMIZE PARALLELISM IN OPENACC

How can it run better in parallel?

!Sacc loop independent vector (128) Guide the compiler to better parallel
do i=1,N decomposition on a given hardware.
C(1) = A(1) + B(1)

Potentially transform loops to better
expose parallelism (collapse) or
locality (tile)

end do

Not shown here:
Collapse
Tile | |
Gang Only analogue in Fortran is re-
Worker structuring or changing compiler

?
Device_type Specification flags. Good enought

11 <ANVIDIA.

MANAGE COMPUTE LOCALITY IN OPENACC

Where should it be run in parallel?

!Sacc set device device num(0)
ISaccé device type (nvidia)
!Sacc parallel loop
do i=1,N

C(i) = A(i) + B(i)
end do

Not shown here:
Self clause
Serial or Kernels construct

Instruct the compiler where to
execute the region

Or leave it up to the runtime

Potentially execute on multiple
devices (including the host)
simultaneously

12

<ANVIDIA.

MANAGE DATA LOCALITY IN OPENACC

Where should data live and for how long?

!Sacc data copyin(A,B)
I Saccé copyout (C)
!Sacc parallel loop
do i=1,N

C(i) = A(i) + B(i)
end do
!Sacc end data

Not shown here:
Unstructured data management
Update directive
Deep-copy
Device data interoperability
Cache directive

ldentify data structures that are
required when distinct memories
exist.

Reduce data motion between distinct
memories

Give compiler context for data reuse

13 <ANVIDIA.

DATA LOCALITY

Unified Memory and the Heterogenous Memory Manager (HMM)

Modern GPUs can handle paging memory to/from the GPU
automatically (locality matters)

HMM is a Linux kernel feature for exposing all memory in this
way (ubiquity matters)

Can the 99% work without explicitly optimizing memory locality?

SPEC ACCEL 1.2 OPENACC BENCHMARKS

OpenACC with Unified Memory vs OpenACC Data Directives

B PO+V100 e P9+YV100 UM
120%

100% = Pure Directive-bosed Data Movement
100%
0%
S0
40%
20%
0%

LG SV P G g o & & 7 F
@ﬁ} £ £ & 5 .\ff’? 4 ‘gg’,f‘@“ & & ‘@&é)f & & dgfe

P 188 Compilers QpenslC SPEC ADCEL™ 1.2 performancs measwed Jome, 2000
SECT on' the benchmork some SPEC ACCEL™ ore repisteres’ racemarks of the Stosdard' Performance Basiugtion Covperaticn

PG I A NIDuA

13113

}

System GPU Memory
Memory

E
I T

Unified Memory

14

<ANVIDIA.

ASYNCHRONOUS EXECUTION IN OPENACC

What can be run concurrently?

!Sacc update device (A) async(l) Expose dependence (or lack of)
!Sacc parallel loop async (1) between different regions
do i=1,N
oL . . Introduce potential for overlappin
C(x) = A1) + B(1) operationsp PP
end do
!Sacc update self(C) async(1) Increase overall system utilization

1Sacec wait (1)

15 <ANVIDIA.

PARALLEL PROGRAMMING CONCERNS

Fortran OpenACC

|dentify Parallelism V

Optimize
Parallelism

Manage Compute
Locality

Manage Data
Locality

Asynchronous ®

Operations

Good Enough?

ANANASNENAN

CLOVERLEAF V1.3

AWE Hydrodynamics mini-app

6500+ lines, 1$acc kernels

| OpenACC or OpenMP or do concurrent

\

http://uk-mac.github.io/CloverLeaf

Source on GitHub

17 <ANVIDIA.

FORTRAN WITH OPENACC DIRECTIVES

% pgfortran -fast -ta=tesla:managed -Minfo -c
PdV_kernel.f90
pdv_kernel:
77, Loop is parallelizable
79, Loop is parallelizable
Accelerator kernel generated
Generating Tesla code
77, !'$acc loop gang, vector(4) ! blockidxX%y
I threadidx%y
79, !$acc loop gang, vector(32)! blockidx%x
I threadidx%x

75
76
77
78

79
80
81
82
83
84
85
86
87
88
89
920
91
92
93
94
95
97
99
101
103
105
106
107

DO k=y_min,y_max

DO j=x_min,x_max

left_flux= (xarea(j ,k)*(xvelo(j ,k)+xvelo(j ,k+1) &
+xvelo(j ,k)+xvelo(j ,k+1)))*0.25 8*dt*@.5
right_flux= (xarea(j+1,k)*(xvelo(j+1,k)+xvelO(j+1,k+1) &
+xvelo(j+1,k)+xveld(j+1,k+1)))*0.25 8*dt*0.5
bottom_flux=(yarea(j ,k)*(yvelo(j ,k)+yvelo(j+i,k) &
+yveld(j ,k)+yvelo(j+i,k)))*e0.25 8*dt*@.5
top_flux= (yarea(j ,k+1)*(yvelo(j ,k+1)+yvelo(j+1,k+1) &

+yveld(j ,k+1)+yvelo(j+1,k+1)))*0.25 8*dt*@.5
total_flux=right_flux-left_flux+top_flux-bottom_flux

volume_change(j,k)=volume(j, k)/(volume(j,k)+total_ flux)

min_cell_volume=MIN(volume(j,k)+right_flux-left_flux+top_flux-bottom_flux &
s,volume(j,k)+right_flux-left_flux &
s,volume(j,k)+top_flux-bottom_flux)

recip_volume=1.0/volume(j,k)

energy_change=(pressure(j,k)/densityo(j,k)+viscosity(j,k)/density@(j,k))*...

energyl(j,k)=energyo(j,k)-energy _change

densityl(j,k)=density@(j,k)*volume_change(j,k)

ENDDO
ENDDO

NVIDIA.

FORTRAN 2018 DO CONCURRENT

% pgfortran -fast -ta=tesla:managed -Minfo -c
PdV_kernel.f90
pdv_kernel:
77, Do concurrent is parallelizable
Accelerator kernel generated
Generating Tesla code
77, !'$acc loop gang, vector(4) ! blockidxX%y
I threadidx%y
I$acc loop gang, vector(32)! blockidx%x
I threadidx%x

75
76
77
78

79
80
81
82
83
84
85
86
87
88
89
920
91
92
93
94
95
97
99
101
103
105
106
107

left_flux= (xarea(j ,k)*(xvelo(j ,k)+xvelo(j ,k+1) &
+xvelo(j ,k)+xvelo(j ,k+1)))*0.25 8*dt*@.5
right_flux= (xarea(j+1,k)*(xvelo(j+1,k)+xvelO(j+1,k+1) &
+xvelo(j+1,k)+xveld(j+1,k+1)))*0.25 8*dt*0.5
bottom_flux=(yarea(j ,k)*(yvelo(j ,k)+yvelo(j+i,k) &
+yveld(j ,k)+yvelo(j+i,k)))*e0.25 8*dt*@.5
top_flux= (yarea(j ,k+1)*(yvelo(j ,k+1)+yvelo(j+1,k+1) &

+yveld(j ,k+1)+yvelo(j+1,k+1)))*0.25 8*dt*@.5
total_flux=right_flux-left_flux+top_flux-bottom_flux

volume_change(j,k)=volume(j, k)/(volume(j,k)+total_ flux)

min_cell_volume=MIN(volume(j,k)+right_flux-left_flux+top_flux-bottom_flux &
s,volume(j,k)+right_flux-left_flux &
s,volume(j,k)+top_flux-bottom_flux)

recip_volume=1.0/volume(j,k)

energy_change=(pressure(j,k)/densityo(j,k)+viscosity(j,k)/density@(j,k))*...

energyl(j,k)=energyo(j,k)-energy _change

densityl(j,k)=density@(j,k)*volume_change(j,k)

NVIDIA.

FORTRAN 2018 DO CONCURRENT FOR V100

CloverLeaf AWE hydrodynamics mini-App, bm32 data set

M Intel 2019.5 OpenMP B IBM XL 16.1 OpenMP B PGI Dev DO CONCURRENT ™ PGI 19.10 OpenACC

—_
o

O

80X g.3x

oo

~N

o

N

w

1.8x

Speedup vs 2-socket Haswell node
(bigger is better)

1.9x 1.9Xx 2.0x 2.0x 2.0x

2-socket Skylake 2-socket Rome 2-socket POWER9 Skylake+1xV100

2
1
0

Systems: Skylake 2x20 core Xeon Gold server (perf-sky-6) one thread per core, Rome: Two 24 core AMD EPYC 7451 CPUs @ 2.9GHz w/ 256GB memory; POWER9 DD2.1 server (perf-wsn1) two threads per core

Compilers: Intel 2019.5.281, PGl 19.10, IBMXL 16.1.1.3
Benchmark: CloverLeaf v1.3 OpenACC, OpenMP and DoConcurrent versions downloaded from https://github.com/UoB-HPC the week of June 10, 2019

https://github.com/UoB-HPC/CloverlLeaf doconcurrent 20

<ANVIDIA.

https://github.com/UoB-HPC/CloverLeaf_doconcurrent

THE FUTURE OF PARALLEL PROGRAMMING

Standard Languages | Directives | Specialized Languages

std: :for_each n(POL, idx(@), n,
[&] (Index_t 1) {
y[i] += a*x[i];

});

do concurrent (i = 1:n)

y(i) = y(i) + a*x(i)
enddo

I$acc data copy(x,y)

do concurrent (i = 1:n)

y(i) = y(i) + a*x(i)
enddo

I$acc end data

attribute (global)
subroutine saxpy(n, a, x, y) {
int 1 = blockIdx%$x*blockDim%x +
threadIdx%x;
if (i < n) y(i) += a*x(1i)
}

program main

real o x(:), y(:)
real,device :: d x(:), d y(:)
d x = x

dy=y

call saxpy

<<< (N+255) /256,256>>>(...)

Drive Base Languages to Better

Support Parallelism

Augment Base Languages with

Directives

Maximize Performance with

Specialized Languages & Intrinsics

21

<ANVIDIA.

THE FUTURE OF PARALLEL PROGRAMMING

Standard Languages | Directives | Specialized Languages

std: :for_each n(POL, idx(@), n,
[&] (Index_t 1) {
y[i] += a*x[i];

});

do concurrent (i = 1:n)

y(i) = y(i) + a*x(i)
enddo

do concurrent (i = 1:n)

y(i) = y(i) + a*x(i)
enddo

attribute (global)
subroutine saxpy(n, a, x, y) {
int 1 = blockIdx%$x*blockDim%x +
threadIdx%x;
if (i < n) y(i) += a*x(1i)
}

program main

real o x(:), y(:)
real,device :: d x(:), d y(:)
d x = x

dy=y

call saxpy

<<< (N+255) /256,256>>>(...)

Drive Base Languages to Better

Support Parallelism

Augment Base Languages with
Directives

Maximize Performance with

Specialized Languages & Intrinsics

22

<ANVIDIA.

THE FUTURE OF PARALLEL PROGRAMMING

Standard Languages | Directives | Specialized Languages

std: :for_each n(POL, idx(@), n,
[&] (Index_t 1) {
y[i] += a*x[i];

});

do concurrent (i = 1:n)

y(i) = y(i) + a*x(i)
enddo

I$acc parallel loop async
do concurrent (i = 1:n)

y(i) = y(i) + a*x(i)
enddo

attribute (global)
subroutine saxpy(n, a, x, y) {
int 1 = blockIdx%$x*blockDim%x +
threadIdx%x;
if (i < n) y(i) += a*x(1i)
}

program main

real o x(:), y(:)
real,device :: d x(:), d y(:)
d x = x

dy=y

call saxpy

<<< (N+255) /256,256>>>(...)

Drive Base Languages to Better

Support Parallelism

Augment Base Languages with
Directives

Maximize Performance with

Specialized Languages & Intrinsics

23

<ANVIDIA.

FUTURE DIRECTIONS FOR OPENACC AND FORTRAN

DO CONCURRENT - Is this ready for widespread use? Is it enough?

Fortran reductions - Critical for many OpenACC applications. Significant restructuring
otherwise.

Co-Arrays - How do they fit into this picture?

Are there other gaps that need filling? What are our common challenges?

How can the OpenACC and Fortran communities work together more closely?

feedback@openacc.org

24 <ANVIDIA.

BACK-UP

Incorporation

ORNL asks CAPS,
Cray, & PGI to unify
efforts with the help
of NVIDIA

OpenACC 1.0

Basic parallelism,
structured data, and
async/wait semantics

A BRIEF HISTORY OF OPENACC

OpenACC 2.0

Unstructured Data
Lifetimes, Routines,
Atomic, Clarifications
& Improvements

v

OpenACC 2.5

Reference Counting,
Profiling Interface,
Additional
Improvements from
User Feedback

v

OpenACC 2.6

Serial Construct,
Attach/Detach
(Manual Deep Copy),
Misc. User Feedback

OpenACC 2.7

Compute on Self,
readonly, Array
Reductions, Lots of

Clarifications, Misc.

User Feedback

OpenACC 3.0

Updated Base
Languages, C++
Lambdas, Zero
modifier, Improved
multi-device support

v

® o @ o @ o o o
2011 Nov. June Oct. Nov Nov. Nov.
2011 2013 2015 2016 2018 2019

