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I. Background
Current and future trends in HPC

Programming CPUs vs GPUs

OpenCL overview
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Maximising throughput: CPUs vs GPUs

𝐓𝐡𝐫𝐨𝐮𝐠𝐡𝐩𝐮𝐭 =
𝐁𝐚𝐧𝐝𝐰𝐢𝐝𝐭𝐡

𝐋𝐚𝐭𝐞𝐧𝐜𝐲
(amount of work 
processed per unit 
time)

CPUs: minimise latency

• Large cache hierarchies (memory latency)

• Instruction pipelining / branch prediction

• Hyper-threading (hide latency)

GPUs: maximise bandwidth

• Highly parallel: 1000s of simple cores

• Very high bandwidth memory
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Bandwidth: number of 
work units processed 
concurrently

Latency: time-
cost per single 
work unit

Time

Parallelism



Programming GPU architectures
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Problem type: SIMD

• Running the same instructions on many thousands of different data

• Little or no global synchronisation between threads

Workload: arithmetic intensity

• Maximise the amount of computation and minimise the amount of memory 
accessed

Memory access: coalesced, structured, direct

• Consecutive threads should access contiguous memory (no striding)

• Hierarchical memory structure

Physically distinct memory space: minimise host-device data transfer

• PCIe bandwidth between GPU and CPU is very slow



Programming models
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Languages

• CUDA (NVIDIA)

• HIP (AMD)

• OpenCL (Khronos)

• SYCL (Khronos)

• OneAPI (Intel)

Libraries

• cuBLAS, cuFFT, etc.

• clSPARSE

• Kokkos

• ArrayFire

• RAJA

• Loopy

Domain-specific 
languages

• PyFR

• OP2

• OPS

Directives

• OpenMP 4.0

• OpenACC



Programming models

Languages

• CUDA (NVIDIA)

• HIP (AMD)

• OpenCL (Khronos)
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• OneAPI (Intel)

July 20 Copyright 2020 Laurence Kedward 7

Libraries

• cuBLAS, cuFFT, etc.

• clSPARSE

• Kokkos

• ArrayFire

• RAJA

• Loopy

Domain-specific 
languages

• PyFR

• OP2

• OPS

Directives

• OpenMP 4.0

• OpenACCIs C++ becoming the de facto language for 
massive parallelism?



OpenCL

• Portable: Intel, AMD, NVIDIA, 
ARM, Qualcomm

• Mature: initial release in 2009

• Explicit control
• Memory management
• Dependencies
• Execution & synchronisation
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An open cross-platform standard for programming a diverse 
range of architectures for parallel workloads. 

Host 
code

Device code
(Kernels)
OpenCL C

OpenCL C 
API

Host CPU Device



OpenCL & Fortran: Motivation
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• OpenCL is an extensive and powerful framework for 

programming highly parallel workloads

• Low-level C API - bad for domain scientists and engineers:

• Very verbose: distracts from research problem

• Pointers aplenty: unsafe, prone to user-error

• Low-level C API – good for developing libraries and abstractions

• Modern Fortran allows simplification and abstraction of C interfaces 



II. The Focal Library
A modern Fortran abstraction library for OpenCL
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Focal: An overview
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A Pure Fortran Library

• Not a language extension

• Tested with gfortran and ifort

Requirements

• Compiler support for Fortran 2008

• An OpenCL SDK (e.g. NVIDIA 
CUDA SDK)

Features

• Simple but explicit syntax to wrap API 
calls

• Remove use of C pointers

• Adds level of type-safety

• Built-in error handling of OpenCL API calls

• Built-in ‘debug’ mode for checking 
correctness

• Built-in routines for collecting and 
presented profiling information

➢ Focal is a modern Fortran abstraction of the OpenCL API



Focal: Using the library
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$ make -j

Building

• Requires: F2008 compiler

Using

Linking

$ $FC –c test.f90 –J/path/to/focal/mod

$ $FC *.o –L/path/to/focal/lib –lFocal -lOpenCL



By example: initialising OpenCL
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Very verbose

• Pointers

• Low-level memory 
allocation

• Size in bytes

• API error handling (not 
shown)



By example: initialising OpenCL with Focal
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Pointers replaced with derived types

Simplified and self-explanatory interface

Additional commands allow multi-device and multi-platform initialisation



Initialise device memory
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Derived types in Focal bring a level of type-safety to the OpenCL API

Derived types for device buffers:



Host-device memory transfers
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• Overloaded assignment for 
buffer types gives simple 
syntax for buffer transfer 
operations.

• Only matching types are 
overloaded: adds type safety

• Supports both blocking and 
non-blocking transfers



Device kernels
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Device code:

A simple OpenCL kernel to add two vectors:

Host code:

Compile program to obtain a kernel object:

Host code:

Launch kernel:



Synchronisation & Dependencies 
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Wait on host:

Synchronise host and device execution

Set event dependencies:

Event objects allow easy dependencies



Profiling device operations
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OpenCL has built-in support for 
event profiling



Extra details
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Fortran submodules

• Absolute separation of interface & 
implementation

• Fast compilation

• Parallel

• Incremental

• Interface parent module can be included as 
‘header’ file

Documentation

• Website and user-guide (mkdocs): 
lkedward.github.io/focal-docs

• API reference (FORD): lkedward.github.io/focal

Development

• Automated tests (Travis): using 
Intel OpenCL on x86

• Code coverage: 
codecov.io/gh/LKedward/focal

github.com/LKedward/focal



III. Results & Conclusions
A modern Fortran abstraction library for OpenCL
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Demonstration: Lattice Boltzmann

• 128 lines of Fortran code

• 142 lines of OpenCL kernel code

• 12x speedup on Tesla P100 GPU versus 28 Xeon cores
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github.com/LKedward/lbm2d_ocl



Demonstration: Finite Volume Euler 
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Kedward, L. J. and Allen, C. B., “Implementation of a Highly-
Parallel Finite Volume Test Bench Code in OpenCL” in AIAA 
Aviation Forum, June 2020, doi.org/10.2514/6.2020-2923

Speedup over Intel CPU (16 threads):

AMD Radeon VII: 18x

NVIDIA Titan V: 20x

Very memory-bound application:

• Various optimisations for maximising 

arithmetic intensity

• 20% improvement from exploiting work-

group shared memory

• Demonstrate mixed-precision solver 



Summary

• Portable
• Pure standard-conforming Fortran library
• Only dependency is OpenCL SDK from hardware vendor
• No vendor/compiler lock-in
• OpenCL is a mature and portable standard

• Easy to use
• Easy to build and use
• Simple and explicit syntax

• Powerful
• Supports most features of OpenCL 1.2
• Allows fine-grain control and optimisation

• Dual source
• Still need to write kernel code in OpenCL C dialect
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Ideas for the Future

Fortran already contains the abstractions 
required to simplify accelerator 
programming
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• Assumed-shape arguments

• Native multi-dimensional arrays

• Custom array bounds

• Derived types/structs in kernels

• Optional kernel arguments

• Work-group shared buffers

• Operator overloading
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Interfacing with OpenCL from Modern 
Fortran for Highly Parallel Workloads

Thank you for listening!
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Current and future trends in HPC
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AMD 2nd gen. (2018) EPYC

• 64 cores & 128 threads

• Up to 3.4GHz clock

• 256MB cache

• 30 bn transistors
amd.com

Intel.com

Intel 2nd gen. (2019)  Xeon scalable

• 56 cores & 112 threads

• Up to 3.80 GHz

• 77MB cache

insidehpc.com

Fujitsu ARM A64FX many-core 
processor

• 2.7 TFLOPs

• 8bn transistors

• 48 cores

• 32GB on-chip memory

• 1024GB/s on-chip bandwidth

NVIDIA A100 ‘Ampere’ (late 2020)

• 19.5 TFLOPs

• 54bn transistors

• 8192 compute cores

• 1866 GB/s memory bandwidth


