
Interfacing with OpenCL from Modern
Fortran for Highly Parallel Workloads

Laurence Kedward

July 20
Copyright 2020 Laurence Kedward 1

Presentation Outline

I. Background

II. Focal – A pure Fortran interface library for OpenCL

III. Results and Conclusions

July 20 Copyright 2020 Laurence Kedward 2

I. Background
Current and future trends in HPC

Programming CPUs vs GPUs

OpenCL overview

July 20 Copyright 2020 Laurence Kedward 3

Maximising throughput: CPUs vs GPUs

𝐓𝐡𝐫𝐨𝐮𝐠𝐡𝐩𝐮𝐭 =
𝐁𝐚𝐧𝐝𝐰𝐢𝐝𝐭𝐡

𝐋𝐚𝐭𝐞𝐧𝐜𝐲
(amount of work
processed per unit
time)

CPUs: minimise latency

• Large cache hierarchies (memory latency)

• Instruction pipelining / branch prediction

• Hyper-threading (hide latency)

GPUs: maximise bandwidth

• Highly parallel: 1000s of simple cores

• Very high bandwidth memory

July 20 Copyright 2020 Laurence Kedward 4

Bandwidth: number of
work units processed
concurrently

Latency: time-
cost per single
work unit

Time

Parallelism

Programming GPU architectures

July 20 Copyright 2020 Laurence Kedward 5

Problem type: SIMD

• Running the same instructions on many thousands of different data

• Little or no global synchronisation between threads

Workload: arithmetic intensity

• Maximise the amount of computation and minimise the amount of memory
accessed

Memory access: coalesced, structured, direct

• Consecutive threads should access contiguous memory (no striding)

• Hierarchical memory structure

Physically distinct memory space: minimise host-device data transfer

• PCIe bandwidth between GPU and CPU is very slow

Programming models

July 20 Copyright 2020 Laurence Kedward 6

Languages

• CUDA (NVIDIA)

• HIP (AMD)

• OpenCL (Khronos)

• SYCL (Khronos)

• OneAPI (Intel)

Libraries

• cuBLAS, cuFFT, etc.

• clSPARSE

• Kokkos

• ArrayFire

• RAJA

• Loopy

Domain-specific
languages

• PyFR

• OP2

• OPS

Directives

• OpenMP 4.0

• OpenACC

Programming models

Languages

• CUDA (NVIDIA)

• HIP (AMD)

• OpenCL (Khronos)

• SYCL (Khronos)

• OneAPI (Intel)

July 20 Copyright 2020 Laurence Kedward 7

Libraries

• cuBLAS, cuFFT, etc.

• clSPARSE

• Kokkos

• ArrayFire

• RAJA

• Loopy

Domain-specific
languages

• PyFR

• OP2

• OPS

Directives

• OpenMP 4.0

• OpenACCIs C++ becoming the de facto language for
massive parallelism?

OpenCL

• Portable: Intel, AMD, NVIDIA,
ARM, Qualcomm

• Mature: initial release in 2009

• Explicit control
• Memory management
• Dependencies
• Execution & synchronisation

July 20 Copyright 2020 Laurence Kedward 8

An open cross-platform standard for programming a diverse
range of architectures for parallel workloads.

Host
code

Device code
(Kernels)
OpenCL C

OpenCL C
API

Host CPU Device

OpenCL & Fortran: Motivation

July 20 Copyright 2020 Laurence Kedward 9

• OpenCL is an extensive and powerful framework for

programming highly parallel workloads

• Low-level C API - bad for domain scientists and engineers:

• Very verbose: distracts from research problem

• Pointers aplenty: unsafe, prone to user-error

• Low-level C API – good for developing libraries and abstractions

• Modern Fortran allows simplification and abstraction of C interfaces

II. The Focal Library
A modern Fortran abstraction library for OpenCL

July 20 Copyright 2020 Laurence Kedward 10

Focal: An overview

July 20 Copyright 2020 Laurence Kedward 11

A Pure Fortran Library

• Not a language extension

• Tested with gfortran and ifort

Requirements

• Compiler support for Fortran 2008

• An OpenCL SDK (e.g. NVIDIA
CUDA SDK)

Features

• Simple but explicit syntax to wrap API
calls

• Remove use of C pointers

• Adds level of type-safety

• Built-in error handling of OpenCL API calls

• Built-in ‘debug’ mode for checking
correctness

• Built-in routines for collecting and
presented profiling information

➢ Focal is a modern Fortran abstraction of the OpenCL API

Focal: Using the library

July 20 Copyright 2020 Laurence Kedward 12

$ make -j

Building

• Requires: F2008 compiler

Using

Linking

$ $FC –c test.f90 –J/path/to/focal/mod

$ $FC *.o –L/path/to/focal/lib –lFocal -lOpenCL

By example: initialising OpenCL

July 20 Copyright 2020 Laurence Kedward 13

Very verbose

• Pointers

• Low-level memory
allocation

• Size in bytes

• API error handling (not
shown)

By example: initialising OpenCL with Focal

July 20 Copyright 2020 Laurence Kedward 14

Pointers replaced with derived types

Simplified and self-explanatory interface

Additional commands allow multi-device and multi-platform initialisation

Initialise device memory

July 20 Copyright 2020 Laurence Kedward 15

Derived types in Focal bring a level of type-safety to the OpenCL API

Derived types for device buffers:

Host-device memory transfers

July 20 Copyright 2020 Laurence Kedward 16

• Overloaded assignment for
buffer types gives simple
syntax for buffer transfer
operations.

• Only matching types are
overloaded: adds type safety

• Supports both blocking and
non-blocking transfers

Device kernels

July 20 Copyright 2020 Laurence Kedward 17

Device code:

A simple OpenCL kernel to add two vectors:

Host code:

Compile program to obtain a kernel object:

Host code:

Launch kernel:

Synchronisation & Dependencies

July 20 Copyright 2020 Laurence Kedward 18

Wait on host:

Synchronise host and device execution

Set event dependencies:

Event objects allow easy dependencies

Profiling device operations

July 20 Copyright 2020 Laurence Kedward 19

OpenCL has built-in support for
event profiling

Extra details

July 20 Copyright 2020 Laurence Kedward 20

Fortran submodules

• Absolute separation of interface &
implementation

• Fast compilation

• Parallel

• Incremental

• Interface parent module can be included as
‘header’ file

Documentation

• Website and user-guide (mkdocs):
lkedward.github.io/focal-docs

• API reference (FORD): lkedward.github.io/focal

Development

• Automated tests (Travis): using
Intel OpenCL on x86

• Code coverage:
codecov.io/gh/LKedward/focal

github.com/LKedward/focal

III. Results & Conclusions
A modern Fortran abstraction library for OpenCL

July 20 Copyright 2020 Laurence Kedward 21

Demonstration: Lattice Boltzmann

• 128 lines of Fortran code

• 142 lines of OpenCL kernel code

• 12x speedup on Tesla P100 GPU versus 28 Xeon cores

July 20 Copyright 2020 Laurence Kedward 22

github.com/LKedward/lbm2d_ocl

Demonstration: Finite Volume Euler

July 20 Copyright 2020 Laurence Kedward 23

Kedward, L. J. and Allen, C. B., “Implementation of a Highly-
Parallel Finite Volume Test Bench Code in OpenCL” in AIAA
Aviation Forum, June 2020, doi.org/10.2514/6.2020-2923

Speedup over Intel CPU (16 threads):

AMD Radeon VII: 18x

NVIDIA Titan V: 20x

Very memory-bound application:

• Various optimisations for maximising

arithmetic intensity

• 20% improvement from exploiting work-

group shared memory

• Demonstrate mixed-precision solver

Summary

• Portable
• Pure standard-conforming Fortran library
• Only dependency is OpenCL SDK from hardware vendor
• No vendor/compiler lock-in
• OpenCL is a mature and portable standard

• Easy to use
• Easy to build and use
• Simple and explicit syntax

• Powerful
• Supports most features of OpenCL 1.2
• Allows fine-grain control and optimisation

• Dual source
• Still need to write kernel code in OpenCL C dialect

July 20 Copyright 2020 Laurence Kedward 24

Ideas for the Future

Fortran already contains the abstractions
required to simplify accelerator
programming

July 20 Copyright 2020 Laurence Kedward 25

• Assumed-shape arguments

• Native multi-dimensional arrays

• Custom array bounds

• Derived types/structs in kernels

• Optional kernel arguments

• Work-group shared buffers

• Operator overloading

Acknowledgements

This work was funded by the MENtOR project, a UKVLN project
supported by the Engineering and Physical Sciences Research
Council (EPSRC) of the UK. Grant reference number
EP/S010378/1

July 20 Copyright 2020 Laurence Kedward 26

UK VERTICAL
LIFT NETWORK

Interfacing with OpenCL from Modern
Fortran for Highly Parallel Workloads

Thank you for listening!

July 20
Copyright 2020 Laurence Kedward 27

Current and future trends in HPC

July 20 Copyright 2020 Laurence Kedward 28

AMD 2nd gen. (2018) EPYC

• 64 cores & 128 threads

• Up to 3.4GHz clock

• 256MB cache

• 30 bn transistors
amd.com

Intel.com

Intel 2nd gen. (2019) Xeon scalable

• 56 cores & 112 threads

• Up to 3.80 GHz

• 77MB cache

insidehpc.com

Fujitsu ARM A64FX many-core
processor

• 2.7 TFLOPs

• 8bn transistors

• 48 cores

• 32GB on-chip memory

• 1024GB/s on-chip bandwidth

NVIDIA A100 ‘Ampere’ (late 2020)

• 19.5 TFLOPs

• 54bn transistors

• 8192 compute cores

• 1866 GB/s memory bandwidth

