
Gagandeep Singh, Software Developer (Quansight) 
gsingh@quansight.com

Supporting Arrays and 
Allocatables in LFortran
International Fortran Conference, 2021



Overview

• Background


• Array Declaration


• Operations involving arrays


• Allocatable arrays


• Array as input and output to functions/subroutines


• Automatic Deallocation



Background
Internal representations of code used by LFortran

• Abstract Syntax Tree (AST) - Contains all the syntax information in the input Fortran 
code. Each statement can be interpreted as a tree and then the whole code is just a 
forest of these trees.


• Abstract Semantic Representation (ASR) - Contains all the semantic information such 
as symbol tables (containing functions, variables, references to module elements, etc.). 
All the heavy lifting (type checking, implicit casting) is done here.


• Backend - Receives ASR as input and generates the code in desired language (LLVM, 
C++, etc.). My work involved dealing with LLVM backend.


• ASR to ASR Passes - Takes ASR as input and transforms it into an equivalent ASR. For 
example, converting all the loops to while loops, select-case to if-else if-if 
ladders which helps in simplifying backend.



Array Declaration

• All the dimensional and type information was already available in ASR 
representation of input code.


• We used a structure to represent arrays in LLVM IR. It contains the following 
information,


ArrayType* array - Pointer to 1D memory block containing the data.


int64_t offset - This contains the offset value. As of now this is always 
set to 0.


dim - This is simply the array of dimension_descriptor structure 
specifying the details of each dimension.



Array Declaration

• The dimension_descriptor structure has the following elements,


lower_bound


upper_bound


size - size of the current dimension


• For allocatable arrays, a 1 bit integer is also added to the array descriptor. It is 
used to check whether the pointer, ArrayType* array, is freed or not.



Operations involving Arrays

• General approach - Convert any array operation to loops. For example, c = 
a + b is converted to a loop, c(i) = a(i) + b(i), for an iterator variable 
i.


• Achieved by writing ASR to ASR passes. Input ASR pass contains original 
expressions with operations on arrays and the output ASR contains the loops 
implementing those operations.



Allocatable arrays

• The descriptor for allocatable arrays is same as for “normal” arrays but 
contain an extra 1 bit integer to keep track whether the memory allocated is 
freed or not.


• We use malloc in C to allocate memory on heap. It is called in LLVM IR.


• Similarly, we use free in C to deallocate the memory allocated previously. In 
case of automatic deallocation (discussed later) we use the extra 1 bit integer 
to decide whether to call free.



Array as input and output to functions/subroutines

• Input to Functions/Subroutines - At LLVM level, pointer to the original array 
descriptor as passed as input to functions/subroutines.


• Output from Subroutines - Pointer to array descriptor is passed which can be 
modified by the subroutine.


• Output from Function - The function is first converted to a subroutine with the 
array being returned as intent(out) argument. Then any call to this 
function is converted to a subroutine call. Achieved by writing ASR to ASR 
pass. Helps in avoiding copying date from temporary return variable to the 
desired destination variable.



Automatic Deallocation

• Motivation


Free the memory on heap while leaving a scope (module, function, 
subroutine, program, etc.). Avoid double frees if already done explicitly by 
the user.


Before calling a function/subroutine, automatically deallocate arrays with 
intent(out), allocatable attributes.


• An ImplicitDeallocate node is appended to all the scopes in a ASR 
pass. It keeps track of only local variables. For example, input/output to a 
function/subroutine won’t be affected.


