
What is 1 kg + 0.1 m?

Arjen Markus, Brad Richardson

What is 1 kg + 0.1 m?

• Using units and dimensions of measurement requires care
• The above question is nonsense, of course …
• Another example:

volume = 4.0/3.0 * pi * radius ** 2

mass = density * volume

write(*,*) ’Mass: ’, mass

Mistakes are not always so easy to spot -> we need programming tools!

Units versus dimensions

• Dimensions: length, mass, …, population size, amount of money
• Units:

• meter versus foot, kilometer versus mile
• second versus hour

• amount of dollars for one euro (or vice versa)

Often (always?) there is a linear relationship, but you must get the
numbers right!

Units versus dimensions – caveat emptor!

Consider temperature:
27°C + 10°C = 37°C

Convert – naïvely, automatically – all contributions to kelvin:
300 K + 283 K = 583 K

You can add a temperature and a temperature difference!

Programming tools

A wide variety is available – but what are the limitations?

Four categories:
• Strictly define the units for variables
• Define the dimensions (and provide conversions)
• Track dimensions during execution
• Static analysis and infer the units/dimensions

Define the units of variables:

Example (style: Snyder, 2016, 2019):
unit :: foot, second
unit :: fps = foot/second
real, unit(foot) :: distance
real, unit(second) :: time
real, unit(fps) :: velocity
velocity = distance / time

Advantage: Compile-time checking – location of the cause of problems
Disadvantage: How to make library routines generic?

Define the dimensions:

Example (style: Richardson, 2020, roughly):
type(length_dim) :: radius, length

type(density_dim) :: density

type(mass_dim) :: mass

real, parameter :: pi = 3.1415926 ! Approximately

mass = pi * density * radius ** 2 * length

Advantage: Define quantities and their dimensions – limited set
Disadvantage: The programmer/user is responsible for the right unit

Track the dimensions at run-time:

Example (style: Petty, 2001):
type(preal) :: x(2), t, dt
x(1) = 1.0 * u_meter ! Start position in [m]
x(2) = 0.0 * u_meter / u_second ! Start velocity in [m/s]
t = 0.0 * u_second ! Time in [s]
dt = 1.0 * u_second ! Time step in [s]
do i = 0,times

t = i * dt
call solve(x, t, dt, func)
write(*,*) real(t), real(x)

enddo

Advantage: One type fits all
Disadvantage: An error is not caught at its origin

Static analysis:

Example (style: Contrastin et al. 2016):
program energy

!= unit kg :: mass
!= unit m/s**2 :: gravity
real, parameter :: mass = 3.00, gravity = 9.81, height = 4.20
!= unit kg m**2/s**2
real :: potential_energy
potential_energy = mass * gravity * height

end program energy

Advantage: Units can be inferred – like height in the example
Disadvantage: Annotations may get stale, no direct support for unit conversions

Observations and conclusions

• Tools differ in usages they allow
• Tools differ in the impact on the source code
• Tools differ in the required language support

Subjective conclusion:
Proposal for units of measure (N2113) for Fortran
provides a robust and flexible solution
- even if not all “typical” uses are directly supported.

