Brad Richardson
Archaeologic, Inc.

Website:
Email:
Twitter: @everythingfunct
Everywhere else: @everythingfunctional

https://everythingfunctional.com/
mailto:everythingfunctional@protonmail.com

What are software tests? \

What are automated tests?

e e e ¢ @

What makes a good test?

= | ﬁ,‘ﬁmﬂ-
Vo m BEE-E s W\

A

Organizing Behavior Tests (What)

run_test(input) (example result) - ”a[msghm Y |r] \A/f]zit SS()EBf]Eiri()

HIE s Runt

—— | I do what thing

"it knows how many asserts there were"

And expect what outcome

heck num asserts(input) result(result)

“"Expected to get a test item input t"

"Expected to get a test result item input t"

Organizing Behavior Tests (How)

ssing case behaviors()

run_test(input) (example result) -
"a passing test case"

HIE s Runt

What are the inputs

/

"it knows how many asserts there were"

result(result)

| "Expected to get a test item input t"

What are the outputs

What sequence of calls

"Expected to get a test result item input t"

Organizing Property Tests

Any input or state

"A test collection", &

“can tell how many tests it has"

heck num cases(input) result(result)

What is always true

What can be performed

/

"Expected to get a test item input t"

module ugly test
use is leap year m, only:
> vegetables, only: &

] f '

is leap year() result(tests)
)

= "is leap year" t("works"

k is leap year() result(result)

$ fpm test -- -v
Running Tests

Test that
is_leap_year
works

A total of 1 test cases

All Passed
Took 1.1328e-5 seconds

Test that
is_leap_year
works

A total of 1 test cases containing a total of 2 assertions

The Bad $ fpm test -- -v

Running Tests

Test that
is_leap_year
is true for leap years
is false for non leap years

A total of 2 test cases
"is leap year"

"is true for leap years" Failed

"is false for non leap years" - £ Took 4.6693e-5 seconds

Test that
is_leap_year
ck leap year() result(result) is true for leap years

)

2016 “2016"
2000 "2000"

SLE is false for non leap years

ck non leap year() result(result)

)

1999), "1999"
19600), "1900"
1 of 2 cases failed
1 of 4 assertions failed

The Good

$ fpm test -- -q -v
Running Tests

A total of 4 test cases

function test is leap year() result(tests) Failed
) Took 1.27397e-4 seconds

Test that
is_leap_year
el Iy returns false for years that are not divisible by 4

"is leap year"
"returns false for years that are not divisible by 4"
! | | 1) & returns true for years that are divisible by 4 but not by 100

L&)

"returns true for years that are divisible by 4 but not by 100", &

& returns false for years that are divisible by 100 but not by 400

"returns false for years that are divisible by 100 but not by 400"

"returns true for years that are divisible by 400", & returns true for years that are divisible by 400

1 of 4 cases failed
2 of 8 assertions failed

The Fancy

function test is leap year() result(tests)
/pe (L $ fpm test -- -q -v
Running Tests
= & A total of 4 test cases

"is leap year"
S Failed

S Took 1.27397e-4 seconds
"returns false for years that are not divisible by 4"

2002 & Test that
is_leap_year

2003)) & returns false for years that are not divisible by 4

"returns true for years that are divisible by 4 but not by 100"
f 2004

ot returns true for years that are divisible by 4 but not by 100

"returns false for years that are divisible by 100 but not by 400", &
I 1900
2100

returns false for years that are divisible by 100 but not by 400

"returns true for years that are divisible by 400" SEELILE il el i A L AT el b e

(2000
2400 &

1 of 4 cases failed
2 of 8 assertions failed

Additional Resources

* Much inspiration for the examples was taken from Kevlin Henney’s talk
here:

* Many of my views on testing techniques were taken from The Art of Unit
Testing by Roy Osherove:
* You can find the Vegetables source code at:

* Feel free to reach out with questions and comments at:

e Slides and code at

https://www.youtube.com/watch?v=tWn8RA_DEic
https://www.manning.com/books/the-art-of-unit-testing-second-edition
https://gitlab.com/everythingfunctional/vegetables
mailto:everythingfunctional@protonmail.com
https://github.com/fortran-lang/talks

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

