HIPFort: Present and Future Directions for
Portable GPU Programming in Fortran

Alessandro Fanfarillo

AMD

[Public]

What is HIP?

AMD Heterogeneous-compute Interface for
Portability, or HIP, is a C++ runtime API and kernel
language that allows developers to create portable
applications that can run on AMD accelerators as well
as CUDA devices

HIP:
“ |s open-source

* Provides an API for an application to leverage GPU
acceleration for both AMD and CUDA devices

= Syntactically similar to CUDA - most CUDA API calls
can be converted in place: cuda -> hip

= Supports a strong subset of CUDA runtime
functionality

2 AMD PUBLIC | 2021 AMDn

3

Kernels

A simple embarrassingly parallel loop

¢ 1=0;1<N;i++) |

h_a[i] *= ;

Can be translated into a GPU kernel:

(N, *d_a) {
i = threadIdx.x + blockIdx.x*blockDim.Xx;
(i<N) {
d_a[i] *= 2.0;

AMD PUBLIC | 2021

A device function that will be launched from the host
program is called a kernel and is declared with the
attribute

Kernels should be declared

All pointers passed to kernels must point to memory on the
device

All threads execute the kernel’s body “simultaneously”

Each thread uses its unique thread and block IDs to compute
a global ID

There could be more than N threads in the grid

AMDA1

Kernels

Kernels are launched from the host:

threads(51, 1); //3D dimensions of a block of threads
blocks ((N+ -1)/ 5 1,1); //3D dimensions the grid of blocks
(&d_a, N*sizeof(double)); //Device memory allocation

hipMemcpy(d a,h _a,N*sizeof(double),hipMemcpyHostToDevice); //Memory copy H->D

(myKernel, //Kernel name (__global void function)
blocks, //Grid dimensions
threads, //Block dimensions
, //Bytes of dynamic LDS space
, //Stream (©=NULL stream)
N, d a); //Kernel arguments
(d_a);
Analogous to CUDA kernel launch syntax (supported by hipcc): Threads in a block are executed in 64-wide chunks
<<<blocks, threads, @, 9>>>(N, d _a); called “wavefronts”

4 AMD PUBLIC | 2021 AMDH

[Public]

ROCm GPU Libraries

ROCm provides several GPU math libraries

= Typically, two versions:
= roc* -> AMD GPU library, usually written in HIP

= hip* -> Thin interface between roc* and Nvidia cu* library

When developing an application meant to target both CUDA
and AMD devices, use the hip* libraries (portability)

When developing an application meant to target only AMD
devices, may prefer the roc* library API (performance).

= Some roc* libraries perform better by using addition APIs not
available in the cu* equivalents

5 AMD PUBLIC | 2021 AMDn

Fortran + HIP C/C++

There is no HIP equivalent to CUDA Fortran

But HIP functions are callable from C, using ‘extern C’, so they can be called directly from Fortran

The strategy here is:

Manually write HIP kernels in C++
Wrap the kernel launch in a C function

Call the C function from Fortran through Fortran’s 1ISO_C_binding
This strategy should be usable by Fortran users since it is standard conforming Fortran

ROCm has an interface layer, hipFort, which provides the wrapped bindings for use in Fortran
https://github.com/ROCmSoftwarePlatform/hipfort

HIPFort provides interfaces for several hip* and roc* libraries

6 AMD PUBLIC | 2021 AMDH

https://github.com/ROCmSoftwarePlatform/hipfort

Hipfort installation and testing

git clone https://github.com/ROCmSoftwarePlatform/hipfort
cd hipfort; mkdir build ; cd build

cmake -DHIPFORT _INSTALL_DIR=/tmp/hipfort ..

make install

export PATH=/tmp/hipfort/bin:SPATH

cd ../test/f2003/vecadd

hipfc -v hip_implementation.cpp main.f03

.Ja.out

7 AMD PUBLIC | 2021 AMDH

Vector add (f2003)

interface __global__ void vector_add(float *out, float *a, float *b, int n)

subroutine launch(out,a,b,N) bind(c) {
) o size_t index = blockldx.x * blockDim.x + threadldx.x;
use iso_c_binding
size_t stride = blockDim.x * gridDim.x;
implicit none
for (size_t i = index; i < n; i += stride)
type(c_ptr), value :: a, b, out
out[i] = ali] + b[i];
integer, value :: N

}
end subroutine
end interface extern "C"
Nbytes = N*c_sizeof(c_float) {
type(c_ptr) :: da = c_null_ptr I Same for db and dout void launch(float *dout, float *da, float *db, int N)
call hipCheck (hipMalloc(da, Nbytes)) ! Same for db and dout {

hipL hK IGGL i 2 i P N);
call hipCheck(hipMemcpy(da, c_loc(a), Nbytes, hipMemcpyHostToDevice)) IpLaunchKemelGGL((vector_add), dim3(320), dim3(256), 0, 0, dout, da, db, N);

call launch(dout,da,db,N)

call hipCheck(hipMemcpy(c_loc(out), dout, Nbytes, hipMemcpyDeviceToHost))

8 AMD PUBLIC | 2021 AMDH

Vector add (f2008)

interface Interface hipMalloc
subroutine launch(grid,block,shmem,stream,out,a,b,N) bind(c)
use iso_c_binding function hipMalloc_b (ptr, mySize) bind (c, name=hipMalloc)
use hipfort_types integer(kind(hipSuccess)) :: hipMalloc_b
implicitnone type(c_ptr) :: ptr
type(c_ptr),value :: a, b, out integer(kind(c_size_t)) :: mySize
integer(c_int), value :: N, shmem end function
type(dim3) :: grid, block
type(c_ptr),value :: stream module procedure hipMalloc_|_0_source, hipMalloc_|_1_source, hipMalloc_|_1 _c_int, &
end subroutine hipMalloc_|I_1_c_size_t, hipMalloc_|_1_2_source,
end interface Ifor int4, int8, real4, real8, complex4, complex8, for all possible ranks (in this case 8).
Real(8), allocatable, dimension(:) :: a, b, out end interface

Real(8), pointer, dimension(:) :: da, db, dout
function hipMalloc_i4_1 c_size_t(ptr,lengthl)

Allocate(a(N), b(N), out(N) use iso_c_binding
use hipfort_enums

call hipCheck(hipMalloc(da, N)) Isame for db use hipfort_types
implicit none

integer(4),pointer,dimension(:), intent(inout) :: ptr
integer(c_size_t):: lengthl

type(c_ptr) :: cptr

Type(dim3) :: grid = dim3(320,1,1) integer(kind(hipSuccess)) :: hipMalloc_i4_1_c_size_t

Call hipCheck(hipMalloc(db, source=b))

Type(dim3) :: block = dim3(256,1,1) hipMalloc_i4_1_c_size_t= hipMalloc_b(cptr,length1*4_8)
call C_F_POINTER(cptr,ptr,SHAPE=[length1])

Call hipCheck (hipMemcpy(da, a, N, hipMemcopyHostToDevice)) !same for db end function

Call launch(grid, block, 0, c_null_ptr, c_loc(dout), c_loc(da), c_loc(db), N)

call hipCheck (hipMemcpy(out,dout,N,hipMemcpyDevicetoHost))

9 AMD PUBLIC | 2021 AMDH

Vector add (f2008)

interface Interface hipMemcpy
subroutine launch(grid,block,shmem,stream,out,a,b,N) bind(c)
use iso_c_binding function hipMemcpy_b(dest,src,sizeBytes,myKind) bind(c, name="hipMemcpy")
use hipfort_types use iso_c_binding
implicitnone use hipfort_enums
type(c_ptr),value :: a, b, out use hipfort_types
integer(c_int), value :: N, shmem implicit none
type(dim3) :: grid, block integer(kind(hipSuccess)) :: hipMemcpy_b
type(c_ptr),value :: stream type(c_ptr),value :: dest
end subroutine type(c_ptr),value :: src
end interface integer(c_size_t),value :: sizeBytes
integer(kind(hipMemcpyHostToHost)),value :: myKind
Real(8), allocatable, dimension(:) :: a, b, out end function

Real(8), pointer, dimension(:) :: da, db, dout
module procedure hipMemcpy_| 0, hipMemcpy | 0 c_int, hipMemcpy_|_0 c_size t,
Allocate(a(N), b(N), out(N) hipMemcpy_|_1, hipMemcpy_| 1 c_int,&....

call hipCheck(hipMalloc(da, N)) Isame for db function hipMemcpy_|_2_c_size_t(dest,src,length,myKind)
use iso_c_binding
use hipfort_enums

Call hipCheck(hipMalloc(db, source=b)) use hipfort_types

implicitnone
Type(dim3) :: grid = dim3(320,1,1) logical,target,dimension(:,:),intent(inout) :: dest
logical,target,dimension(:,:),intent(in) ::src
Type(dim3) :: block = dim3(256,1,1) integer(c_size_t),intent(in) :: length

integer(kind(hipMemcpyHostToHost)) :: myKind
integer(kind(cudaSuccess)) :: hipMemcpy_|_2_c_size_t

. . . . |
Call hipCheck (hipMemcpy(da, a, N, hipMemcopyHostToDevice)) !same for db integer(kind(hipSuccess)) :: hipMemcpy_|_2. ¢ size t

Call launch(grid, block, 0, c_null_ptr, c_loc(dout), c_loc(da), c_loc(db), N) hipMemcpy_|_2_c_size_t= hipMemcpy_b(c_loc(dest),c_loc(src),length*1_8 myKind)

end function
call hipCheck (hipMemcpy(out,dout,N,hipMemcpyDevicetoHost))

10 AMD PUBLIC | 2021 AM D n

Fortran 2018 low-level C Interop.

Fortran 2018 provides optional, assumed-type dummy arguments, and assumed-rank :

Interface
function hipMemcpy_b(dest,source,N,myKind) bind(c,name="hipmemcpy ')
use iso_c_binding, only: c_ptr, c_size t
integer(kind(hipSuccess)) :: hipMemcpy b
type(c_ptr),value :: dest
type(c_ptr),value :: source
integer(c_size_t),value :: N
integer(kind(hipMemcpyHostToHost)),value :: myKind
end function hipMemcpyDH_b {
End interface
}

In C:
int hipmemcpy_(void *dest, void *source, size_t N, int myKind)

return hipMemcpy(dest,source,N,myKind);

Function hipMemcpy (device, host, hipMemcpyKind)
integer(kind(hipSuccess) :: res
type(*), target :: ptr(..)
type(*), target :: source(..)
integer(kind(hipMemcpyHostToHost)) :: hipMemcpyKind

res = hipMemcpy_b(c_loc(dest), c_loc(source), N, hipMemcpyKind)
end function
AMDZ\

11 AMD PUBLIC | 2021

Fortran 2018 C Descriptor

From ISO_Fortran_binding.h in gfortran: Void your_function(CFl_cdesc_t *desc)
{
typedef struct CFl_dim_t size_ tnew _n=1;

{ for(int r = 0; r < desc->rank; r++)
CFl_index_t lower_bound; new_n *= desc->dim|[r].extent;
CFl_index_t extent; }

CFl_index_t sm;

}

CFl_dim_t;

It might be tempting to do something like this:
typedef struct CFl_cdesc _t

{ Void myHipMalloc(CFI_cdesc_t *desc, size_t N)
void *base_addr; {
size_t elem_len; hipMalloc(&desc->base_addr,N);
int version; }
CFl_rank_t rank;
CFI_attribute_t attribute; THIS IS NOT GOOD. Changes to the cdesc must be done via the
CFl_type_t type CFI_* routines exposed by ISO_Fortran_binding.h
CFl_dim_t dim[];
}
CFl_cdesc _t;

12 AMD PUBLIC | 2021 AM D n

Thanks to:
Dominic Charrier
Greg Rodgers

Paul Bauman

Main HIPFort Contributors

AMDA1

Disclaimer

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and typographical errors. The information contained
herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product and roadmap changes, component and motherboard version changes,
new model and/or product releases, product differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. Any computer system has risks
of security vulnerabilities that cannot be completely prevented or mitigated. AMD assumes no obligation to update or otherwise correct or revise this information. However, AMD
reserves the right to revise this information and to make changes from time to time to the content hereof without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY
INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER
CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Third-party content is licensed to you directly by the third party that owns the content and is not licensed to you by AMD. ALL LINKED THIRD-PARTY CONTENT IS PROVIDED “AS IS”
WITHOUT A WARRANTY OF ANY KIND. USE OF SUCH THIRD-PARTY CONTENT IS DONE AT YOUR SOLE DISCRETION AND UNDER NO CIRCUMSTANCES WILL AMD BE LIABLE TO YOU FOR
ANY THIRD-PARTY CONTENT. YOU ASSUME ALL RISK AND ARE SOLELY RESPONSIBLE FOR ANY DAMAGES THAT MAY ARISE FROM YOUR USE OF THIRD-PARTY CONTENT.

© 2021 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, ROCm, Radeon, Radeon Instinct and combinations thereof are trademarks of Advanced Micro
Devices, Inc. in the United States and/or other jurisdictions. Other names are for informational purposes only and may be trademarks of their respective owners.

The OpenMP name and the OpenMP logo are registered trademarks of the OpenMP Architecture Review Board.

14 AMD PUBLIC | 2021 AM D n

